duct/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
//! Duct is a library for running child processes. Duct makes it easy to build
//! pipelines and redirect IO like a shell. At the same time, Duct helps you
//! write correct, portable code: whitespace is never significant, errors from
//! child processes get reported by default, and a variety of [gotchas, bugs,
//! and platform
//! inconsistencies](https://github.com/oconnor663/duct.py/blob/master/gotchas.md)
//! are handled for you the Right Wayâ„¢.
//!
//! - [Documentation](https://docs.rs/duct)
//! - [Crate](https://crates.io/crates/duct)
//! - [GitHub repo](https://github.com/oconnor663/duct.rs)
//! - [the same library, in Python](https://github.com/oconnor663/duct.py)
//!
//! Examples
//! --------
//!
//! Run a command without capturing any output. Here "hi" is printed directly
//! to the terminal:
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! use duct::cmd;
//! cmd!("echo", "hi").run()?;
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Capture the standard output of a command. Here "hi" is returned as a
//! `String`:
//!
//! ```
//! # use duct::cmd;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! let stdout = cmd!("echo", "hi").read()?;
//! assert_eq!(stdout, "hi");
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Capture the standard output of a pipeline:
//!
//! ```
//! # use duct::cmd;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! let stdout = cmd!("echo", "hi").pipe(cmd!("sed", "s/i/o/")).read()?;
//! assert_eq!(stdout, "ho");
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Merge standard error into standard output and read both incrementally:
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! use duct::cmd;
//! use std::io::prelude::*;
//! use std::io::BufReader;
//!
//! let big_cmd = cmd!("bash", "-c", "echo out && echo err 1>&2");
//! let reader = big_cmd.stderr_to_stdout().reader()?;
//! let mut lines = BufReader::new(reader).lines();
//! assert_eq!(lines.next().unwrap()?, "out");
//! assert_eq!(lines.next().unwrap()?, "err");
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Children that exit with a non-zero status return an error by default:
//!
//! ```
//! # use duct::cmd;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! let result = cmd!("false").run();
//! assert!(result.is_err());
//! let result = cmd!("false").unchecked().run();
//! assert!(result.is_ok());
//! # }
//! # Ok(())
//! # }
//! ```

use once_cell::sync::OnceCell;
use shared_child::SharedChild;
use std::collections::HashMap;
use std::ffi::{OsStr, OsString};
use std::fmt;
use std::fs::File;
use std::io;
use std::io::prelude::*;
use std::mem;
use std::path::{Path, PathBuf};
use std::process::{Command, ExitStatus, Output, Stdio};
use std::sync::{Arc, Mutex};
use std::thread::JoinHandle;

#[cfg(not(windows))]
use std::os::unix::prelude::*;
#[cfg(windows)]
use std::os::windows::prelude::*;

/// Unix-specific extensions to duct, for sending signals.
#[cfg(unix)]
pub mod unix;

// enums defined below
use ExpressionInner::*;
use IoExpressionInner::*;

/// Create a command given a program name and a collection of arguments. See
/// also the [`cmd!`](macro.cmd.html) macro, which doesn't require a collection.
///
/// # Example
///
/// ```
/// use duct::cmd;
///
/// let args = vec!["foo", "bar", "baz"];
///
/// # // NOTE: Normally this wouldn't work on Windows, but we have an "echo"
/// # // binary that gets built for our main tests, and it's sitting around by
/// # // the time we get here. If this ever stops working, then we can disable
/// # // the tests that depend on it.
/// let output = cmd("echo", &args).read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// ```
pub fn cmd<T, U>(program: T, args: U) -> Expression
where
    T: IntoExecutablePath,
    U: IntoIterator,
    U::Item: Into<OsString>,
{
    let mut argv_vec = Vec::new();
    argv_vec.push(program.to_executable());
    argv_vec.extend(args.into_iter().map(Into::<OsString>::into));
    Expression::new(Cmd(argv_vec))
}

/// Create a command with any number of of positional arguments, which may be
/// different types (anything that implements
/// [`Into<OsString>`](https://doc.rust-lang.org/std/convert/trait.From.html)).
/// See also the [`cmd`](fn.cmd.html) function, which takes a collection of
/// arguments.
///
/// # Example
///
/// ```
/// use duct::cmd;
/// use std::path::Path;
///
/// let arg1 = "foo";
/// let arg2 = "bar".to_owned();
/// let arg3 = Path::new("baz");
///
/// let output = cmd!("echo", arg1, arg2, arg3).read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// ```
#[macro_export]
macro_rules! cmd {
    ( $program:expr $(, $arg:expr )* $(,)? ) => {
        {
            use std::ffi::OsString;
            let args: std::vec::Vec<OsString> = std::vec![$( Into::<OsString>::into($arg) ),*];
            $crate::cmd($program, args)
        }
    };
}

/// The central objects in Duct, Expressions are created with
/// [`cmd`](fn.cmd.html) or [`cmd!`](macro.cmd.html), combined with
/// [`pipe`](struct.Expression.html#method.pipe), and finally executed with
/// [`run`](struct.Expression.html#method.run),
/// [`read`](struct.Expression.html#method.read),
/// [`start`](struct.Expression.html#method.start), or
/// [`reader`](struct.Expression.html#method.reader). They also support several
/// methods to control their execution, like
/// [`stdin_bytes`](struct.Expression.html#method.stdin_bytes),
/// [`stdout_capture`](struct.Expression.html#method.stdout_capture),
/// [`env`](struct.Expression.html#method.env), and
/// [`unchecked`](struct.Expression.html#method.unchecked).
///
/// Expressions are immutable, and they do a lot of
/// [`Arc`](https://doc.rust-lang.org/std/sync/struct.Arc.html) sharing
/// internally, so all of the methods below take `&self` and return a new
/// `Expression` cheaply.
///
/// Expressions using `pipe` form trees, and the order in which you call
/// different methods can matter, just like it matters where you put
/// redirections in Bash. For example, each of these expressions suppresses
/// output differently:
///
/// ```no_run
/// # use duct::cmd;
/// # fn main() -> std::io::Result<()> {
/// // Only suppress stderr on the left side.
/// cmd!("foo").stderr_null().pipe(cmd!("bar")).run()?;
///
/// // Only suppress stderr on the right side.
/// cmd!("foo").pipe(cmd!("bar").stderr_null()).run()?;
///
/// // Suppress stderr on both sides.
/// cmd!("foo").pipe(cmd!("bar")).stderr_null().run()?;
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
#[must_use]
pub struct Expression(Arc<ExpressionInner>);

impl Expression {
    /// Execute an expression, wait for it to complete, and return a
    /// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
    /// object containing the results. Nothing is captured by default, but if
    /// you build the expression with
    /// [`stdout_capture`](struct.Expression.html#method.stdout_capture) or
    /// [`stderr_capture`](struct.Expression.html#method.stderr_capture) then
    /// the `Output` will hold those captured bytes.
    ///
    /// # Errors
    ///
    /// In addition to all the IO errors possible with
    /// [`std::process::Command`](https://doc.rust-lang.org/std/process/struct.Command.html),
    /// `run` will return an
    /// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
    /// IO error if child returns a non-zero exit status. To suppress this error
    /// and return an `Output` even when the exit status is non-zero, use the
    /// [`unchecked`](struct.Expression.html#method.unchecked) method.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("echo", "hi").stdout_capture().run().unwrap();
    /// assert_eq!(b"hi\n".to_vec(), output.stdout);
    /// # }
    /// # }
    /// ```
    pub fn run(&self) -> io::Result<Output> {
        // This could be optimized to avoid creating a background threads, by
        // using the current thread to read stdout or stderr if only one of
        // them is captured, or by using async IO to read both.
        self.start()?.into_output()
    }

    /// Execute an expression, capture its standard output, and return the
    /// captured output as a `String`. This is a convenience wrapper around
    /// [`reader`](struct.Expression.html#method.reader). Like backticks and
    /// `$()` in the shell, `read` trims trailing newlines.
    ///
    /// # Errors
    ///
    /// In addition to all the errors possible with
    /// [`run`](struct.Expression.html#method.run), `read` will return an error
    /// if the captured bytes aren't valid UTF-8.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("echo", "hi").stdout_capture().read().unwrap();
    /// assert_eq!("hi", output);
    /// # }
    /// # }
    /// ```
    pub fn read(&self) -> io::Result<String> {
        let mut reader = self.reader()?;
        let mut output = String::new();
        reader.read_to_string(&mut output)?;
        while output.ends_with('\n') || output.ends_with('\r') {
            output.truncate(output.len() - 1);
        }
        Ok(output)
    }

    /// Start running an expression, and immediately return a
    /// [`Handle`](struct.Handle.html) that represents all the child processes.
    /// This is analogous to the
    /// [`spawn`](https://doc.rust-lang.org/std/process/struct.Command.html#method.spawn)
    /// method in the standard library. The `Handle` may be shared between
    /// multiple threads.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let handle = cmd!("echo", "hi").stdout_capture().start().unwrap();
    /// let output = handle.wait().unwrap();
    /// assert_eq!(b"hi\n".to_vec(), output.stdout);
    /// # }
    /// # }
    /// ```
    pub fn start(&self) -> io::Result<Handle> {
        let stdout_capture = OutputCaptureContext::new();
        let stderr_capture = OutputCaptureContext::new();
        let context = IoContext::new(&stdout_capture, &stderr_capture);

        Ok(Handle {
            inner: self.0.start(context)?,
            result: OnceCell::new(),
            readers: Mutex::new((
                stdout_capture.maybe_read_thread(),
                stderr_capture.maybe_read_thread(),
            )),
        })
    }

    /// Start running an expression, and immediately return a
    /// [`ReaderHandle`](struct.ReaderHandle.html) attached to the child's
    /// stdout. This is similar to `.stdout_capture().start()`, but it returns
    /// the reader to the caller rather than reading from a background thread.
    ///
    /// Note that because this method doesn't read child output on a background
    /// thread, it's a best practice to only create one `ReaderHandle` at a
    /// time. Child processes with a lot of output will eventually block if
    /// their stdout pipe isn't read from. If you have multiple children
    /// running, but you're only reading from one of them at a time, that could
    /// block the others and lead to performance issues or deadlocks. For
    /// reading from multiple children at once, prefer
    /// `.stdout_capture().start()`.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # use std::io::prelude::*;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let mut reader = cmd!("echo", "hi").reader().unwrap();
    /// let mut stdout = Vec::new();
    /// reader.read_to_end(&mut stdout).unwrap();
    /// assert_eq!(b"hi\n".to_vec(), stdout);
    /// # }
    /// # }
    /// ```
    pub fn reader(&self) -> io::Result<ReaderHandle> {
        let stdout_capture = OutputCaptureContext::new();
        let stderr_capture = OutputCaptureContext::new();
        let context = IoContext::new(&stdout_capture, &stderr_capture);
        let handle = Handle {
            inner: self.stdout_capture().0.start(context)?,
            result: OnceCell::new(),
            readers: Mutex::new((None, stderr_capture.maybe_read_thread())),
        };
        Ok(ReaderHandle {
            handle,
            reader: stdout_capture.pair.into_inner().expect("pipe opened").0,
        })
    }

    /// Join two expressions into a pipe expression, where the standard output
    /// of the left will be hooked up to the standard input of the right, like
    /// `|` in the shell.
    ///
    /// # Errors
    ///
    /// During execution, if one side of the pipe returns a non-zero exit
    /// status, that becomes the status of the whole pipe, similar to Bash's
    /// `pipefail` option. If both sides return non-zero, and one of them is
    /// [`unchecked`](struct.Expression.html#method.unchecked), then the checked
    /// side wins. Otherwise the right side wins.
    ///
    /// During spawning, if the left side of the pipe spawns successfully, but
    /// the right side fails to spawn, the left side will be killed and
    /// awaited. That's necessary to return the spawn error immediately,
    /// without leaking the left side as a zombie.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("echo", "hi").pipe(cmd!("sed", "s/h/p/")).read();
    /// assert_eq!("pi", output.unwrap());
    /// # }
    /// # }
    /// ```
    pub fn pipe<T: Into<Expression>>(&self, right: T) -> Expression {
        Self::new(Pipe(self.clone(), right.into()))
    }

    /// Use bytes or a string as input for an expression, like `<<<` in the
    /// shell. A worker thread will write the input at runtime.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// // Many types implement Into<Vec<u8>>. Here's a string.
    /// let output = cmd!("cat").stdin_bytes("foo").read().unwrap();
    /// assert_eq!("foo", output);
    ///
    /// // And here's a byte slice.
    /// let output = cmd!("cat").stdin_bytes(&b"foo"[..]).read().unwrap();
    /// assert_eq!("foo", output);
    /// # }
    /// # }
    /// ```
    pub fn stdin_bytes<T: Into<Vec<u8>>>(&self, bytes: T) -> Expression {
        Self::new(Io(StdinBytes(Arc::new(bytes.into())), self.clone()))
    }

    /// Open a file at the given path and use it as input for an expression,
    /// like `<` in the shell.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// // Many types implement Into<PathBuf>, including &str.
    /// let output = cmd!("head", "-c", "3").stdin_path("/dev/zero").read().unwrap();
    /// assert_eq!("\0\0\0", output);
    /// # }
    /// # }
    /// ```
    pub fn stdin_path<T: Into<PathBuf>>(&self, path: T) -> Expression {
        Self::new(Io(StdinPath(path.into()), self.clone()))
    }

    /// Use an already opened file or pipe as input for an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let input_file = std::fs::File::open("/dev/zero").unwrap();
    /// let output = cmd!("head", "-c", "3").stdin_file(input_file).read().unwrap();
    /// assert_eq!("\0\0\0", output);
    /// # }
    /// # }
    /// ```
    #[cfg(not(windows))]
    pub fn stdin_file<T: IntoRawFd>(&self, file: T) -> Expression {
        Self::new(Io(StdinFile(into_file(file)), self.clone()))
    }
    #[cfg(windows)]
    pub fn stdin_file<T: IntoRawHandle>(&self, file: T) -> Expression {
        Self::new(Io(StdinFile(into_file(file)), self.clone()))
    }

    /// Use `/dev/null` (or `NUL` on Windows) as input for an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("cat").stdin_null().read().unwrap();
    /// assert_eq!("", output);
    /// # }
    /// # }
    /// ```
    pub fn stdin_null(&self) -> Expression {
        Self::new(Io(StdinNull, self.clone()))
    }

    /// Open a file at the given path and use it as output for an expression,
    /// like `>` in the shell.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # use std::io::prelude::*;
    /// # if cfg!(not(windows)) {
    /// // Many types implement Into<PathBuf>, including &str.
    /// let path = cmd!("mktemp").read().unwrap();
    /// cmd!("echo", "wee").stdout_path(&path).run().unwrap();
    /// let mut output = String::new();
    /// std::fs::File::open(&path).unwrap().read_to_string(&mut output).unwrap();
    /// assert_eq!("wee\n", output);
    /// # }
    /// # }
    /// ```
    pub fn stdout_path<T: Into<PathBuf>>(&self, path: T) -> Expression {
        Self::new(Io(StdoutPath(path.into()), self.clone()))
    }

    /// Use an already opened file or pipe as output for an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # use std::io::prelude::*;
    /// # if cfg!(not(windows)) {
    /// let path = cmd!("mktemp").read().unwrap();
    /// let file = std::fs::File::create(&path).unwrap();
    /// cmd!("echo", "wee").stdout_file(file).run().unwrap();
    /// let mut output = String::new();
    /// std::fs::File::open(&path).unwrap().read_to_string(&mut output).unwrap();
    /// assert_eq!("wee\n", output);
    /// # }
    /// # }
    /// ```
    #[cfg(not(windows))]
    pub fn stdout_file<T: IntoRawFd>(&self, file: T) -> Expression {
        Self::new(Io(StdoutFile(into_file(file)), self.clone()))
    }
    #[cfg(windows)]
    pub fn stdout_file<T: IntoRawHandle>(&self, file: T) -> Expression {
        Self::new(Io(StdoutFile(into_file(file)), self.clone()))
    }

    /// Use `/dev/null` (or `NUL` on Windows) as output for an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// // This echo command won't print anything.
    /// cmd!("echo", "foo", "bar", "baz").stdout_null().run().unwrap();
    ///
    /// // And you won't get anything even if you try to read its output! The
    /// // null redirect happens farther down in the expression tree than the
    /// // implicit `stdout_capture`, and so it takes precedence.
    /// let output = cmd!("echo", "foo", "bar", "baz").stdout_null().read().unwrap();
    /// assert_eq!("", output);
    /// # }
    /// ```
    pub fn stdout_null(&self) -> Expression {
        Self::new(Io(StdoutNull, self.clone()))
    }

    /// Capture the standard output of an expression. The captured bytes will
    /// be available on the `stdout` field of the
    /// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
    /// object returned by [`run`](struct.Expression.html#method.run) or
    /// [`wait`](struct.Handle.html#method.wait). Output is read by a
    /// background thread, so the child will never block writing to stdout. But
    /// note that [`read`](struct.Expression.html#method.read) and
    /// [`reader`](struct.Expression.html#method.reader) can be more
    /// convenient, and they don't require the background thread.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// // The most direct way to read stdout bytes is `stdout_capture`.
    /// let output1 = cmd!("echo", "foo").stdout_capture().run().unwrap().stdout;
    /// assert_eq!(&b"foo\n"[..], &output1[..]);
    ///
    /// // The `read` method is a shorthand for `stdout_capture`, and it also
    /// // does string parsing and newline trimming.
    /// let output2 = cmd!("echo", "foo").read().unwrap();
    /// assert_eq!("foo", output2)
    /// # }
    /// # }
    /// ```
    pub fn stdout_capture(&self) -> Expression {
        Self::new(Io(StdoutCapture, self.clone()))
    }

    /// Join the standard output of an expression to its standard error pipe,
    /// similar to `1>&2` in the shell.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("echo", "foo").stdout_to_stderr().stderr_capture().run().unwrap();
    /// assert_eq!(&b"foo\n"[..], &output.stderr[..]);
    /// # }
    /// # }
    /// ```
    pub fn stdout_to_stderr(&self) -> Expression {
        Self::new(Io(StdoutToStderr, self.clone()))
    }

    /// Open a file at the given path and use it as error output for an
    /// expression, like `2>` in the shell.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # use std::io::prelude::*;
    /// # if cfg!(not(windows)) {
    /// // Many types implement Into<PathBuf>, including &str.
    /// let path = cmd!("mktemp").read().unwrap();
    /// cmd!("sh", "-c", "echo wee >&2").stderr_path(&path).run().unwrap();
    /// let mut error_output = String::new();
    /// std::fs::File::open(&path).unwrap().read_to_string(&mut error_output).unwrap();
    /// assert_eq!("wee\n", error_output);
    /// # }
    /// # }
    /// ```
    pub fn stderr_path<T: Into<PathBuf>>(&self, path: T) -> Expression {
        Self::new(Io(StderrPath(path.into()), self.clone()))
    }

    /// Use an already opened file or pipe as error output for an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # use std::io::prelude::*;
    /// # if cfg!(not(windows)) {
    /// let path = cmd!("mktemp").read().unwrap();
    /// let file = std::fs::File::create(&path).unwrap();
    /// cmd!("sh", "-c", "echo wee >&2").stderr_file(file).run().unwrap();
    /// let mut error_output = String::new();
    /// std::fs::File::open(&path).unwrap().read_to_string(&mut error_output).unwrap();
    /// assert_eq!("wee\n", error_output);
    /// # }
    /// # }
    /// ```
    #[cfg(not(windows))]
    pub fn stderr_file<T: IntoRawFd>(&self, file: T) -> Expression {
        Self::new(Io(StderrFile(into_file(file)), self.clone()))
    }
    #[cfg(windows)]
    pub fn stderr_file<T: IntoRawHandle>(&self, file: T) -> Expression {
        Self::new(Io(StderrFile(into_file(file)), self.clone()))
    }

    /// Use `/dev/null` (or `NUL` on Windows) as error output for an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// // This echo-to-stderr command won't print anything.
    /// cmd!("sh", "-c", "echo foo bar baz >&2").stderr_null().run().unwrap();
    /// # }
    /// # }
    /// ```
    pub fn stderr_null(&self) -> Expression {
        Self::new(Io(StderrNull, self.clone()))
    }

    /// Capture the error output of an expression. The captured bytes will be
    /// available on the `stderr` field of the `Output` object returned by
    /// [`run`](struct.Expression.html#method.run) or
    /// [`wait`](struct.Handle.html#method.wait). Output is read by a
    /// background thread, so the child will never block writing to stderr.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output_obj = cmd!("sh", "-c", "echo foo >&2").stderr_capture().run().unwrap();
    /// assert_eq!(&b"foo\n"[..], &output_obj.stderr[..]);
    /// # }
    /// # }
    /// ```
    pub fn stderr_capture(&self) -> Expression {
        Self::new(Io(StderrCapture, self.clone()))
    }

    /// Join the standard error of an expression to its standard output pipe,
    /// similar to `2>&1` in the shell.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let error_output = cmd!("sh", "-c", "echo foo >&2").stderr_to_stdout().read().unwrap();
    /// assert_eq!("foo", error_output);
    /// # }
    /// # }
    /// ```
    pub fn stderr_to_stdout(&self) -> Expression {
        Self::new(Io(StderrToStdout, self.clone()))
    }

    /// Swap the stdout and stderr of an expression.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("sh", "-c", "echo foo && echo bar >&2")
    ///     .stdout_stderr_swap()
    ///     .stdout_capture()
    ///     .stderr_capture()
    ///     .run()
    ///     .unwrap();
    /// assert_eq!(b"bar\n", &*output.stdout);
    /// assert_eq!(b"foo\n", &*output.stderr);
    /// # }
    /// # }
    /// ```
    pub fn stdout_stderr_swap(&self) -> Expression {
        Self::new(Io(StdoutStderrSwap, self.clone()))
    }

    /// Set the working directory where the expression will execute.
    ///
    /// Note that in some languages (Rust and Python at least), there are
    /// tricky platform differences in the way relative exe paths interact with
    /// child working directories. In particular, the exe path will be
    /// interpreted relative to the child dir on Unix, but relative to the
    /// parent dir on Windows. Duct prefers the Windows behavior, and in order
    /// to get that behavior on all platforms it calls
    /// [`std::fs::canonicalize`](https://doc.rust-lang.org/std/fs/fn.canonicalize.html)
    /// on relative exe paths when `dir` is in use. Paths in this sense are any
    /// program name containing a path separator, regardless of the type. (Note
    /// also that `Path` and `PathBuf` program names get a `./` prepended to
    /// them automatically by the
    /// [`IntoExecutablePath`](trait.IntoExecutablePath.html) trait, and so
    /// will always contain a separator.)
    ///
    /// # Errors
    ///
    /// Canonicalization can fail on some filesystems, or if the current
    /// directory has been removed, and
    /// [`run`](struct.Expression.html#method.run) will return those errors
    /// rather than trying any sneaky workarounds.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("pwd").dir("/").read().unwrap();
    /// assert_eq!("/", output);
    /// # }
    /// # }
    /// ```
    pub fn dir<T: Into<PathBuf>>(&self, path: T) -> Expression {
        Self::new(Io(Dir(path.into()), self.clone()))
    }

    /// Set a variable in the expression's environment.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// let output = cmd!("sh", "-c", "echo $FOO").env("FOO", "bar").read().unwrap();
    /// assert_eq!("bar", output);
    /// # }
    /// # }
    /// ```
    pub fn env<T, U>(&self, name: T, val: U) -> Expression
    where
        T: Into<OsString>,
        U: Into<OsString>,
    {
        Self::new(Io(
            Env(canonicalize_env_var_name(name.into()), val.into()),
            self.clone(),
        ))
    }

    /// Remove a variable from the expression's environment.
    ///
    /// Note that all the environment functions try to do whatever the platform
    /// does with respect to case sensitivity. That means that
    /// `env_remove("foo")` will unset the uppercase variable `FOO` on Windows,
    /// but not on Unix.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # if cfg!(not(windows)) {
    /// std::env::set_var("TESTING", "true");
    /// let output = cmd!("sh", "-c", "echo a${TESTING}b")
    ///     .env_remove("TESTING")
    ///     .read()
    ///     .unwrap();
    /// assert_eq!("ab", output);
    /// # }
    /// # }
    /// ```
    pub fn env_remove<T>(&self, name: T) -> Expression
    where
        T: Into<OsString>,
    {
        Self::new(Io(
            EnvRemove(canonicalize_env_var_name(name.into())),
            self.clone(),
        ))
    }

    /// Set the expression's entire environment, from a collection of
    /// name-value pairs (like a `HashMap`). Note that some environment
    /// variables are required for normal program execution (like `SystemRoot`
    /// on Windows), so copying the parent's environment is usually preferable
    /// to starting with an empty one.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// # use std::collections::HashMap;
    /// # if cfg!(not(windows)) {
    /// let mut env_map: HashMap<_, _> = std::env::vars().collect();
    /// env_map.insert("FOO".into(), "bar".into());
    /// let output = cmd!("sh", "-c", "echo $FOO").full_env(&env_map).read().unwrap();
    /// assert_eq!("bar", output);
    /// // The IntoIterator/Into<OsString> bounds are pretty flexible. Passing
    /// // by value works here too.
    /// let output = cmd!("sh", "-c", "echo $FOO").full_env(env_map).read().unwrap();
    /// assert_eq!("bar", output);
    /// # }
    /// # }
    /// ```
    pub fn full_env<T, U, V>(&self, name_vals: T) -> Expression
    where
        T: IntoIterator<Item = (U, V)>,
        U: Into<OsString>,
        V: Into<OsString>,
    {
        let env_map = name_vals
            .into_iter()
            .map(|(k, v)| (canonicalize_env_var_name(k.into()), v.into()))
            .collect();
        Self::new(Io(FullEnv(env_map), self.clone()))
    }

    /// Prevent a non-zero exit status from causing
    /// [`run`](struct.Expression.html#method.run) or
    /// [`read`](struct.Expression.html#method.read) to return an error. The
    /// unchecked exit code will still be there on the `Output` returned by
    /// `run`; its value doesn't change.
    ///
    /// "Uncheckedness" sticks to an exit code as it bubbles up through
    /// complicated pipelines, but it doesn't "infect" other exit codes. So for
    /// example, if only one sub-expression in a pipe has `unchecked`, then
    /// errors returned by the other side will still be checked. That said,
    /// most commonly you'll just call `unchecked` right before `run`, and
    /// it'll apply to an entire expression.
    ///
    /// # Example
    ///
    /// Note the differences among these three cases:
    ///
    /// ```no_run
    /// # use duct::cmd;
    /// # fn main() -> std::io::Result<()> {
    /// // Don't check errors on the left side.
    /// cmd!("foo").unchecked().pipe(cmd!("bar")).run()?;
    ///
    /// // Don't check errors on the right side.
    /// cmd!("foo").pipe(cmd!("bar").unchecked()).run()?;
    ///
    /// // Don't check errors on either side.
    /// cmd!("foo").pipe(cmd!("bar")).unchecked().run()?;
    /// # Ok(())
    /// # }
    /// ```
    pub fn unchecked(&self) -> Expression {
        Self::new(Io(Unchecked, self.clone()))
    }

    /// Add a hook for modifying
    /// [`std::process::Command`](https://doc.rust-lang.org/std/process/struct.Command.html)
    /// objects immediately before they're executed.
    ///
    /// The hook is called for each command in its sub-expression, and each time the expression is
    /// executed. The call happens after other features like `stdout` and `env` have been applied,
    /// so any changes made by the hook take priority. More than one hook can be added, in which
    /// case the innermost is executed last. For example, if one call to `before_spawn` is applied
    /// to an entire pipe expression, and another call is applied to just one command within the
    /// pipe, the hook for the entire pipeline will be called first over the command where both
    /// hooks apply.
    ///
    /// This is intended for rare and tricky cases, like callers who want to change the group ID of
    /// their child processes, or who want to run code in `before_exec`. Most callers shouldn't
    /// need to use it.
    ///
    /// # Example
    ///
    /// ```
    /// # use duct::cmd;
    /// # fn main() {
    /// let output = cmd!("echo", "foo")
    ///     .before_spawn(|cmd| {
    ///         // Sneakily add an extra argument.
    ///         cmd.arg("bar");
    ///         Ok(())
    ///     })
    ///     .read()
    ///     .unwrap();
    /// assert_eq!("foo bar", output);
    /// # }
    /// ```
    pub fn before_spawn<F>(&self, hook: F) -> Expression
    where
        F: Fn(&mut Command) -> io::Result<()> + Send + Sync + 'static,
    {
        Self::new(Io(BeforeSpawn(BeforeSpawnHook::new(hook)), self.clone()))
    }

    fn new(inner: ExpressionInner) -> Expression {
        Expression(Arc::new(inner))
    }
}

// Delegate to the ExpressionInner for debug formatting. This avoids printing
// redundant Expression() constructors around everything.
impl fmt::Debug for Expression {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        self.0.fmt(f)
    }
}

// Implementing Into<Expression> for references lets us accept both references
// and values in `pipe`.
impl<'a> From<&'a Expression> for Expression {
    fn from(expr: &Expression) -> Expression {
        expr.clone()
    }
}

/// A handle to a running expression, returned by the
/// [`start`](struct.Expression.html#method.start) method.
///
/// Calling `start` followed by
/// [`into_output`](struct.Handle.html#method.into_output) on the handle is
/// equivalent to [`run`](struct.Expression.html#method.run). Note that unlike
/// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
/// most of the methods on `Handle` take `&self` rather than `&mut self`, and a
/// `Handle` may be shared between multiple threads.
///
/// Like `std::process::Child`, `Handle` doesn't do anything special in its
/// destructor. If you drop a handle without waiting on it, child processes and
/// background IO threads will keep running, and the children will become
/// [zombie processes](https://en.wikipedia.org/wiki/Zombie_process) when they
/// exit. That's a resource leak, similar to leaking memory or file handles.
/// Note that in contrast to `Handle`, a
/// [`ReaderHandle`](struct.ReaderHandle.html) kills child processes in its
/// destructor, to avoid creating zombies.
///
/// See the [`shared_child`](https://github.com/oconnor663/shared_child.rs)
/// crate for implementation details behind making handles thread safe.
#[derive(Debug)]
pub struct Handle {
    inner: HandleInner,
    result: OnceCell<(ExpressionStatus, Output)>,
    readers: Mutex<(Option<ReaderThread>, Option<ReaderThread>)>,
}

impl Handle {
    /// Wait for the running expression to finish, and return a reference to its
    /// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html).
    /// Multiple threads may wait at the same time.
    ///
    /// # Errors
    ///
    /// In addition to all the IO errors possible with
    /// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
    /// `wait` will return an
    /// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
    /// IO error if child returns a non-zero exit status. To suppress this
    /// error and return an `Output` even when the exit status is non-zero, use
    /// the [`unchecked`](struct.Expression.html#method.unchecked) method.
    pub fn wait(&self) -> io::Result<&Output> {
        // Await the children and any threads that are reading their output.
        // Another caller may already have done this.
        let (expression_status, output) = wait_on_handle_and_output(self)?;
        // If the child returned a non-zero exit status, and that's a checked
        // error, return the error.
        if expression_status.is_checked_error() {
            return Err(io::Error::new(
                io::ErrorKind::Other,
                expression_status.message(),
            ));
        }
        Ok(output)
    }

    /// Check whether the running expression is finished. If it is, return a
    /// reference to its
    /// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html).
    /// If it's still running, return `Ok(None)`.
    ///
    /// # Errors
    ///
    /// In addition to all the IO errors possible with
    /// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
    /// `try_wait` will return an
    /// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
    /// IO error if child returns a non-zero exit status. To suppress this
    /// error and return an `Output` even when the exit status is non-zero, use
    /// the [`unchecked`](struct.Expression.html#method.unchecked) method.
    pub fn try_wait(&self) -> io::Result<Option<&Output>> {
        if self.inner.wait(WaitMode::Nonblocking)?.is_none() {
            Ok(None)
        } else {
            self.wait().map(Some)
        }
    }

    /// Wait for the running expression to finish, and then return a
    /// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
    /// object containing the results, including any captured output. This
    /// consumes the `Handle`. Calling
    /// [`start`](struct.Expression.html#method.start) followed by
    /// `into_output` is equivalent to
    /// [`run`](struct.Expression.html#method.run).
    ///
    /// # Errors
    ///
    /// In addition to all the IO errors possible with
    /// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
    /// `into_output` will return an
    /// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
    /// IO error if child returns a non-zero exit status. To suppress this
    /// error and return an `Output` even when the exit status is non-zero, use
    /// the [`unchecked`](struct.Expression.html#method.unchecked) method.
    pub fn into_output(self) -> io::Result<Output> {
        self.wait()?;
        let (_, output) = self.result.into_inner().expect("result missing");
        Ok(output)
    }

    /// Kill the running expression and await all the child processes. Any
    /// errors that would normally result from a non-zero exit status are
    /// ignored, as with
    /// [`unchecked`](struct.Expression.html#method.unchecked).
    ///
    /// Note that as with
    /// [`std::process::Child::kill`](https://doc.rust-lang.org/beta/std/process/struct.Child.html#method.kill),
    /// this does not kill any grandchild processes that the children have
    /// spawned on their own. It only kills the child processes that Duct
    /// spawned itself. See
    /// [`gotchas.md`](https://github.com/oconnor663/duct.py/blob/master/gotchas.md)
    /// for an extensive discussion of this behavior.
    pub fn kill(&self) -> io::Result<()> {
        self.inner.kill()?;
        // This wait cleans up the child but does not return an error for a
        // non-zero exit status.
        //
        // Note that we *must not* call wait_on_handle_and_output here. There
        // might be un-signaled grandchild processes holding the output pipe,
        // and we can't expect them to exit promptly. We only want to reap our
        // immediate zombie children here. See gotchas.md for more on why we
        // can't do better.
        self.inner.wait(WaitMode::Blocking)?;
        Ok(())
    }

    /// Return a `Vec<u32>` containing the PIDs of all of the child processes.
    /// The PIDs are given in pipeline order, from left to right.
    pub fn pids(&self) -> Vec<u32> {
        self.inner.pids()
    }
}

// Does a blocking wait on the handle, if it hasn't been awaited yet. This
// includes collection the output results from reader threads. After calling
// this function, the result cell is guaranteed to be populated. This does not
// do any status checking.
fn wait_on_handle_and_output(handle: &Handle) -> io::Result<&(ExpressionStatus, Output)> {
    // Take the reader threads lock and then see if a result has already been
    // collected. Doing this check inside the lock avoids racing to fill the
    // result if it's empty.
    let mut readers_lock = handle.readers.lock().expect("readers lock poisoned");
    if let Some(result) = handle.result.get() {
        // This handle has already been waited on. Return the same result
        // again.
        Ok(result)
    } else {
        // This handle hasn't been waited on yet. Do that now. If waiting on
        // the children returns an error, just short-circuit with that. This
        // shouldn't really happen.
        let status = handle
            .inner
            .wait(WaitMode::Blocking)?
            .expect("blocking wait can't return None");
        // Now that we have an exit status, we need to join the output reader
        // threads, if any. We're already holding the lock that we need.
        let (stdout_reader, stderr_reader) = &mut *readers_lock;
        // If either of the reader threads returned an error, just
        // short-circuit with that. Future calls to this function will panic.
        // But this really shouldn't happen.
        let stdout = stdout_reader
            .take()
            .map(|t| t.join().expect("stdout reader error"))
            .unwrap_or(Ok(Vec::new()))?;
        let stderr = stderr_reader
            .take()
            .map(|t| t.join().expect("stderr reader error"))
            .unwrap_or(Ok(Vec::new()))?;
        let output = Output {
            status: status.status,
            stdout,
            stderr,
        };
        Ok(handle.result.get_or_init(|| (status, output)))
    }
}

#[derive(Debug)]
enum ExpressionInner {
    Cmd(Vec<OsString>),
    Pipe(Expression, Expression),
    Io(IoExpressionInner, Expression),
}

impl ExpressionInner {
    fn start(&self, context: IoContext) -> io::Result<HandleInner> {
        Ok(match self {
            Cmd(argv) => HandleInner::Child(start_argv(argv, context)?),
            Pipe(left, right) => {
                HandleInner::Pipe(Box::new(PipeHandle::start(left, right, context)?))
            }
            Io(io_inner, expr) => start_io(io_inner, expr, context)?,
        })
    }
}

#[derive(Debug)]
enum HandleInner {
    Child(ChildHandle),
    // If the left side of a pipe fails to start, there's nothing to wait for,
    // and we return an error immediately. But if the right side fails to start,
    // the caller still needs to wait on the left, and we must return a handle.
    // Thus the handle preserves the right side's errors here.
    Pipe(Box<PipeHandle>),
    StdinBytes(Box<StdinBytesHandle>),
    Unchecked(Box<HandleInner>),
}

impl HandleInner {
    fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
        match self {
            HandleInner::Child(child_handle) => child_handle.wait(mode),
            HandleInner::Pipe(pipe_handle) => pipe_handle.wait(mode),
            HandleInner::StdinBytes(stdin_bytes_handle) => stdin_bytes_handle.wait(mode),
            HandleInner::Unchecked(inner_handle) => {
                Ok(inner_handle.wait(mode)?.map(|mut status| {
                    status.checked = false;
                    status
                }))
            }
        }
    }

    fn kill(&self) -> io::Result<()> {
        match self {
            HandleInner::Child(child_handle) => child_handle.kill(),
            HandleInner::Pipe(pipe_handle) => pipe_handle.kill(),
            HandleInner::StdinBytes(stdin_bytes_handle) => stdin_bytes_handle.kill(),
            HandleInner::Unchecked(inner_handle) => inner_handle.kill(),
        }
    }

    fn pids(&self) -> Vec<u32> {
        match self {
            HandleInner::Child(child_handle) => vec![child_handle.child.id()],
            HandleInner::Pipe(pipe_handle) => pipe_handle.pids(),
            HandleInner::StdinBytes(stdin_bytes_handle) => stdin_bytes_handle.inner_handle.pids(),
            HandleInner::Unchecked(inner_handle) => inner_handle.pids(),
        }
    }
}

fn start_argv(argv: &[OsString], context: IoContext) -> io::Result<ChildHandle> {
    let exe = canonicalize_exe_path_for_dir(&argv[0], &context)?;
    let mut command = Command::new(exe);
    command.args(&argv[1..]);
    if !matches!(context.stdin, IoValue::ParentStdin) {
        command.stdin(context.stdin.into_stdio()?);
    }
    if !matches!(context.stdout, IoValue::ParentStdout) {
        command.stdout(context.stdout.into_stdio()?);
    }
    if !matches!(context.stderr, IoValue::ParentStderr) {
        command.stderr(context.stderr.into_stdio()?);
    }
    if let Some(dir) = context.dir {
        command.current_dir(dir);
    }
    command.env_clear();
    for (name, val) in context.env {
        command.env(name, val);
    }
    // The innermost hooks are pushed last, and we execute them last.
    for hook in context.before_spawn_hooks.iter() {
        hook.call(&mut command)?;
    }
    let shared_child = SharedChild::spawn(&mut command)?;
    let command_string = format!("{:?}", argv);
    Ok(ChildHandle {
        child: shared_child,
        command_string,
    })
}

#[derive(Debug)]
struct ChildHandle {
    child: shared_child::SharedChild,
    command_string: String,
}

impl ChildHandle {
    fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
        let maybe_status = match mode {
            WaitMode::Blocking => Some(self.child.wait()?),
            WaitMode::Nonblocking => self.child.try_wait()?,
        };
        if let Some(status) = maybe_status {
            Ok(Some(ExpressionStatus {
                status,
                checked: true,
                command: self.command_string.clone(),
            }))
        } else {
            Ok(None)
        }
    }

    fn kill(&self) -> io::Result<()> {
        self.child.kill()
    }
}

#[derive(Debug)]
struct PipeHandle {
    left_handle: HandleInner,
    right_handle: HandleInner,
}

impl PipeHandle {
    fn start(left: &Expression, right: &Expression, context: IoContext) -> io::Result<PipeHandle> {
        let (reader, writer) = os_pipe::pipe()?;
        // dup'ing stdin/stdout isn't strictly necessary, but no big deal
        let mut left_context = context.try_clone()?;
        left_context.stdout = IoValue::Handle(into_file(writer));
        let mut right_context = context;
        right_context.stdin = IoValue::Handle(into_file(reader));

        // Errors starting the left side just short-circuit us.
        let left_handle = left.0.start(left_context)?;

        // Now the left side is started. If the right side fails to start, we
        // can't let the left side turn into a zombie. We have to await it, and
        // that means we have to kill it first.
        let right_result = right.0.start(right_context);
        match right_result {
            Ok(right_handle) => Ok(PipeHandle {
                left_handle,
                right_handle,
            }),
            Err(e) => {
                // Realistically, kill should never return an error. If it
                // does, it's probably due to some bug in this library or one
                // of its dependencies. If that happens just propagate the
                // error and accept that we're probably leaking something.
                left_handle.kill()?;
                // Similarly, this private API wait should never return an
                // error. It might return a non-zero status, but here that's
                // still an Ok result.
                left_handle.wait(WaitMode::Blocking)?;
                Err(e)
            }
        }
    }

    fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
        // Wait on both sides first, without propagating any errors.
        let left_wait_result = self.left_handle.wait(mode);
        let right_wait_result = self.right_handle.wait(mode);

        // Now we deal with errors from either of those waits. The left wait
        // happened first, so that one takes precedence. Note that this is the
        // reverse order of exit status precedence.
        let left_status = left_wait_result?;
        let right_status = right_wait_result?;

        // If both waits succeeded, return one of the two statuses.
        Ok(pipe_status_precedence(left_status, right_status))
    }

    // As with wait, we need to call kill on both sides even if the left side
    // returns an error.
    fn kill(&self) -> io::Result<()> {
        let left_kill_result = self.left_handle.kill();
        let right_kill_result = self.right_handle.kill();
        // As with wait, the left side happened first, so its errors take
        // precedence.
        left_kill_result.and(right_kill_result)
    }

    fn pids(&self) -> Vec<u32> {
        let mut pids = self.left_handle.pids();
        pids.extend_from_slice(&self.right_handle.pids());
        pids
    }
}

// The rules of precedence are:
// 1) If either side unfinished, the result is unfinished.
// 2) Checked errors trump unchecked errors.
// 3) Any errors trump success.
// 4) All else equal, the right side wins.
fn pipe_status_precedence(
    left_maybe_status: Option<ExpressionStatus>,
    right_maybe_status: Option<ExpressionStatus>,
) -> Option<ExpressionStatus> {
    let (left_status, right_status) = match (left_maybe_status, right_maybe_status) {
        (Some(left), Some(right)) => (left, right),
        _ => return None,
    };
    Some(if right_status.is_checked_error() {
        right_status
    } else if left_status.is_checked_error() {
        left_status
    } else if !right_status.status.success() {
        right_status
    } else {
        left_status
    })
}

fn start_io(
    io_inner: &IoExpressionInner,
    expr_inner: &Expression,
    mut context: IoContext,
) -> io::Result<HandleInner> {
    match io_inner {
        StdinBytes(v) => {
            return Ok(HandleInner::StdinBytes(Box::new(StdinBytesHandle::start(
                expr_inner,
                context,
                Arc::clone(v),
            )?)));
        }
        StdinPath(p) => {
            context.stdin = IoValue::Handle(File::open(p)?);
        }
        StdinFile(f) => {
            context.stdin = IoValue::Handle(f.try_clone()?);
        }
        StdinNull => {
            context.stdin = IoValue::Null;
        }
        StdoutPath(p) => {
            context.stdout = IoValue::Handle(File::create(p)?);
        }
        StdoutFile(f) => {
            context.stdout = IoValue::Handle(f.try_clone()?);
        }
        StdoutNull => {
            context.stdout = IoValue::Null;
        }
        StdoutCapture => {
            context.stdout = IoValue::Handle(into_file(context.stdout_capture.write_pipe()?));
        }
        StdoutToStderr => {
            context.stdout = context.stderr.try_clone()?;
        }
        StderrPath(p) => {
            context.stderr = IoValue::Handle(File::create(p)?);
        }
        StderrFile(f) => {
            context.stderr = IoValue::Handle(f.try_clone()?);
        }
        StderrNull => {
            context.stderr = IoValue::Null;
        }
        StderrCapture => {
            context.stderr = IoValue::Handle(into_file(context.stderr_capture.write_pipe()?));
        }
        StderrToStdout => {
            context.stderr = context.stdout.try_clone()?;
        }
        StdoutStderrSwap => {
            mem::swap(&mut context.stdout, &mut context.stderr);
        }
        Dir(p) => {
            context.dir = Some(p.clone());
        }
        Env(name, val) => {
            context.env.insert(name.clone(), val.clone());
        }
        EnvRemove(name) => {
            context.env.remove(name);
        }
        FullEnv(map) => {
            context.env = map.clone();
        }
        Unchecked => {
            let inner_handle = expr_inner.0.start(context)?;
            return Ok(HandleInner::Unchecked(Box::new(inner_handle)));
        }
        BeforeSpawn(hook) => {
            context.before_spawn_hooks.push(hook.clone());
        }
    }
    expr_inner.0.start(context)
}

#[derive(Debug)]
struct StdinBytesHandle {
    inner_handle: HandleInner,
    writer_thread: SharedThread<io::Result<()>>,
}

impl StdinBytesHandle {
    fn start(
        expression: &Expression,
        mut context: IoContext,
        input: Arc<Vec<u8>>,
    ) -> io::Result<StdinBytesHandle> {
        let (reader, mut writer) = os_pipe::pipe()?;
        context.stdin = IoValue::Handle(into_file(reader));
        let inner = expression.0.start(context)?;
        // We only spawn the writer thread if the expression started
        // successfully, so that start errors won't leak a zombie thread.
        let thread = std::thread::spawn(move || writer.write_all(&input));
        Ok(StdinBytesHandle {
            inner_handle: inner,
            writer_thread: SharedThread::new(thread),
        })
    }

    fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
        // We're responsible for joining the writer thread and not leaving a zombie.
        // But waiting on the inner child can return an error, and in that case we
        // don't know whether the child is still running or not. The rule in
        // nonblocking mode is "clean up as much as we can, but never block," so we
        // can't wait on the writer thread. But the rule in blocking mode is "clean
        // up everything, even if some cleanup returns errors," so we must wait
        // regardless of what's going on with the child.
        let wait_res = self.inner_handle.wait(mode);
        if mode.should_join_background_thread(&wait_res) {
            // Join the writer thread. Broken pipe errors here are expected if
            // the child exited without reading all of its input, so we suppress
            // them. Return other errors though.
            match self.writer_thread.join() {
                Err(err) if err.kind() != io::ErrorKind::BrokenPipe => {
                    return Err(clone_io_error(err));
                }
                _ => {}
            }
        }
        wait_res
    }

    fn kill(&self) -> io::Result<()> {
        self.inner_handle.kill()
    }
}

#[derive(Debug)]
enum IoExpressionInner {
    StdinBytes(Arc<Vec<u8>>),
    StdinPath(PathBuf),
    StdinFile(File),
    StdinNull,
    StdoutPath(PathBuf),
    StdoutFile(File),
    StdoutNull,
    StdoutCapture,
    StdoutToStderr,
    StderrPath(PathBuf),
    StderrFile(File),
    StderrNull,
    StderrCapture,
    StderrToStdout,
    StdoutStderrSwap,
    Dir(PathBuf),
    Env(OsString, OsString),
    EnvRemove(OsString),
    FullEnv(HashMap<OsString, OsString>),
    Unchecked,
    BeforeSpawn(BeforeSpawnHook),
}

type HookFn = Arc<dyn Fn(&mut Command) -> io::Result<()> + Send + Sync>;

#[derive(Clone)]
struct BeforeSpawnHook {
    inner: HookFn,
}

impl BeforeSpawnHook {
    fn new<F>(hook: F) -> Self
    where
        F: Fn(&mut Command) -> io::Result<()> + Send + Sync + 'static,
    {
        Self {
            inner: Arc::new(hook),
        }
    }

    fn call(&self, command: &mut Command) -> io::Result<()> {
        (self.inner)(command)
    }
}

impl fmt::Debug for BeforeSpawnHook {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "<closure>")
    }
}

// An IoContext represents the file descriptors child processes are talking to at execution time.
// It's initialized in run(), with dups of the stdin/stdout/stderr pipes, and then passed down to
// sub-expressions. Compound expressions will clone() it, and redirections will modify it.
#[derive(Debug)]
struct IoContext<'a> {
    stdin: IoValue,
    stdout: IoValue,
    stderr: IoValue,
    stdout_capture: &'a OutputCaptureContext,
    stderr_capture: &'a OutputCaptureContext,
    dir: Option<PathBuf>,
    env: HashMap<OsString, OsString>,
    before_spawn_hooks: Vec<BeforeSpawnHook>,
}

impl<'a> IoContext<'a> {
    // Returns (context, stdout_reader, stderr_reader).
    fn new(
        stdout_capture: &'a OutputCaptureContext,
        stderr_capture: &'a OutputCaptureContext,
    ) -> Self {
        Self {
            stdin: IoValue::ParentStdin,
            stdout: IoValue::ParentStdout,
            stderr: IoValue::ParentStderr,
            stdout_capture,
            stderr_capture,
            dir: None,
            env: std::env::vars_os().collect(),
            before_spawn_hooks: Vec::new(),
        }
    }

    fn try_clone(&self) -> io::Result<IoContext<'a>> {
        Ok(IoContext {
            stdin: self.stdin.try_clone()?,
            stdout: self.stdout.try_clone()?,
            stderr: self.stderr.try_clone()?,
            stdout_capture: self.stdout_capture,
            stderr_capture: self.stderr_capture,
            dir: self.dir.clone(),
            env: self.env.clone(),
            before_spawn_hooks: self.before_spawn_hooks.clone(),
        })
    }
}

#[derive(Debug)]
enum IoValue {
    ParentStdin,
    ParentStdout,
    ParentStderr,
    Null,
    // We store all handles as File, even when they're e.g. anonymous pipes,
    // using the into_file() conversion below. The File type is a very thin
    // wrapper around the raw handle, but it gives us try_clone() and drop().
    Handle(File),
}

impl IoValue {
    fn try_clone(&self) -> io::Result<IoValue> {
        Ok(match self {
            IoValue::ParentStdin => IoValue::ParentStdin,
            IoValue::ParentStdout => IoValue::ParentStdout,
            IoValue::ParentStderr => IoValue::ParentStderr,
            IoValue::Null => IoValue::Null,
            IoValue::Handle(f) => IoValue::Handle(f.try_clone()?),
        })
    }

    fn into_stdio(self) -> io::Result<Stdio> {
        Ok(match self {
            IoValue::ParentStdin => os_pipe::dup_stdin()?.into(),
            IoValue::ParentStdout => os_pipe::dup_stdout()?.into(),
            IoValue::ParentStderr => os_pipe::dup_stderr()?.into(),
            IoValue::Null => Stdio::null(),
            IoValue::Handle(f) => f.into(),
        })
    }
}

// We would rather convert an fd-owning object directly into a
// std::process::Stdio, since all you can do with that is give it to a
// std::process::Command. Unfortunately, Stdio doesn't provide a try_clone
// method, and we need that in order to pass the object to multiple children.
// As a workaround, convert the object to a std::fs::File. All we will use this
// File for is try_clone and Into<Stdio>, which should be sound on any type of
// descriptor. (Some types will lead to an error, like a TcpStream, but that's
// not unsound.) If we discover any unsound cases, we might have to replace
// this with a new trait.
#[cfg(not(windows))]
fn into_file<T: IntoRawFd>(handle: T) -> File {
    unsafe { File::from_raw_fd(handle.into_raw_fd()) }
}
#[cfg(windows)]
fn into_file<T: IntoRawHandle>(handle: T) -> File {
    unsafe { File::from_raw_handle(handle.into_raw_handle()) }
}

// This struct keeps track of a child exit status, whether or not it's been
// unchecked(), and what the command was that gave it (for error messages).
#[derive(Clone, Debug)]
struct ExpressionStatus {
    status: ExitStatus,
    checked: bool,
    command: String,
}

impl ExpressionStatus {
    fn is_checked_error(&self) -> bool {
        self.checked && !self.status.success()
    }

    fn message(&self) -> String {
        format!(
            "command {} exited with code {}",
            self.command,
            self.exit_code_string()
        )
    }

    #[cfg(not(windows))]
    fn exit_code_string(&self) -> String {
        if self.status.code().is_none() {
            return format!("<signal {}>", self.status.signal().unwrap());
        }
        self.status.code().unwrap().to_string()
    }

    #[cfg(windows)]
    fn exit_code_string(&self) -> String {
        self.status.code().unwrap().to_string()
    }
}

fn canonicalize_exe_path_for_dir(exe_name: &OsStr, context: &IoContext) -> io::Result<OsString> {
    // There's a tricky interaction between exe paths and `dir`. Exe paths can
    // be relative, and so we have to ask: Is an exe path interpreted relative
    // to the parent's cwd, or the child's? The answer is that it's platform
    // dependent! >.< (Windows uses the parent's cwd, but because of the
    // fork-chdir-exec pattern, Unix usually uses the child's.)
    //
    // We want to use the parent's cwd consistently, because that saves the
    // caller from having to worry about whether `dir` will have side effects,
    // and because it's easy for the caller to use Path::join if they want to.
    // That means that when `dir` is in use, we need to detect exe names that
    // are relative paths, and absolutify them. We want to do that as little as
    // possible though, both because canonicalization can fail, and because we
    // prefer to let the caller control the child's argv[0].
    //
    // We never want to absolutify a name like "emacs", because that's probably
    // a program in the PATH rather than a local file. So we look for slashes
    // in the name to determine what's a filepath and what isn't. Note that
    // anything given as a std::path::Path will always have a slash by the time
    // we get here, because we specialize the IntoExecutablePath trait to
    // prepend a ./ to them when they're relative. This leaves the case where
    // Windows users might pass a local file like "foo.bat" as a string, which
    // we can't distinguish from a global program name. However, because the
    // Windows has the preferred "relative to parent's cwd" behavior already,
    // this case actually works without our help. (The thing Windows users have
    // to watch out for instead is local files shadowing global program names,
    // which I don't think we can or should prevent.)

    let has_separator = exe_name
        .to_string_lossy()
        .chars()
        .any(std::path::is_separator);
    let is_relative = Path::new(exe_name).is_relative();
    if context.dir.is_some() && has_separator && is_relative {
        Path::new(exe_name).canonicalize().map(Into::into)
    } else {
        Ok(exe_name.to_owned())
    }
}

// We want to allow Path("foo") to refer to the local file "./foo" on
// Unix, and we want to *prevent* Path("echo") from referring to the
// global "echo" command on either Unix or Windows. Prepend a dot to all
// relative paths to accomplish both of those.
fn dotify_relative_exe_path(path: &Path) -> PathBuf {
    // This is a no-op if path is absolute or begins with a Windows prefix.
    Path::new(".").join(path)
}

/// An implementation detail of [`cmd`](fn.cmd.html), to distinguish paths from
/// other string types.
///
/// `Path("foo.sh")` means the file named `foo.sh` in the current directory.
/// However if you try to execute that path with
/// [`std::process::Command`](https://doc.rust-lang.org/std/process/struct.Command.html),
/// Unix will get upset that it doesn't have a leading `./`. Rust knows that the
/// string is a path, but that distinction gets lost by the time execution
/// happens.
///
/// To execute relative paths correctly, duct prepends the `./` to them
/// automatically. This trait captures the distinction between the path types
/// and other types of strings, which don't get modified. See the trait bounds
/// on [`cmd`](fn.cmd.html).
pub trait IntoExecutablePath {
    fn to_executable(self) -> OsString;
}

// TODO: Get rid of most of these impls once specialization lands.

impl<'a> IntoExecutablePath for &'a Path {
    fn to_executable(self) -> OsString {
        dotify_relative_exe_path(self).into()
    }
}

impl IntoExecutablePath for PathBuf {
    fn to_executable(self) -> OsString {
        dotify_relative_exe_path(&self).into()
    }
}

impl<'a> IntoExecutablePath for &'a PathBuf {
    fn to_executable(self) -> OsString {
        dotify_relative_exe_path(self).into()
    }
}

impl<'a> IntoExecutablePath for &'a str {
    fn to_executable(self) -> OsString {
        self.into()
    }
}

impl IntoExecutablePath for String {
    fn to_executable(self) -> OsString {
        self.into()
    }
}

impl<'a> IntoExecutablePath for &'a String {
    fn to_executable(self) -> OsString {
        self.into()
    }
}

impl<'a> IntoExecutablePath for &'a OsStr {
    fn to_executable(self) -> OsString {
        self.into()
    }
}

impl IntoExecutablePath for OsString {
    fn to_executable(self) -> OsString {
        self
    }
}

impl<'a> IntoExecutablePath for &'a OsString {
    fn to_executable(self) -> OsString {
        self.into()
    }
}

// io::Error doesn't implement clone directly, so we kind of hack it together.
fn clone_io_error(error: &io::Error) -> io::Error {
    if let Some(code) = error.raw_os_error() {
        io::Error::from_raw_os_error(code)
    } else {
        io::Error::new(error.kind(), error.to_string())
    }
}

#[derive(Debug)]
struct SharedThread<T> {
    result: OnceCell<T>,
    handle: Mutex<Option<JoinHandle<T>>>,
}

// A thread that sticks its result in a lazy cell, so that multiple callers can see it.
impl<T> SharedThread<T> {
    fn new(handle: JoinHandle<T>) -> Self {
        SharedThread {
            result: OnceCell::new(),
            handle: Mutex::new(Some(handle)),
        }
    }

    // If the other thread panicked, this will panic.
    fn join(&self) -> &T {
        let mut handle_lock = self.handle.lock().expect("shared thread handle poisoned");
        if let Some(handle) = handle_lock.take() {
            let ret = handle.join().expect("panic on shared thread");
            self.result
                .set(ret)
                .map_err(|_| "result cell unexpectedly full")
                .unwrap();
        }
        self.result.get().expect("result cell unexpectedly empty")
    }
}

#[derive(Clone, Copy, Debug)]
enum WaitMode {
    Blocking,
    Nonblocking,
}

impl WaitMode {
    fn should_join_background_thread(
        &self,
        expression_result: &io::Result<Option<ExpressionStatus>>,
    ) -> bool {
        // Nonblocking waits can only join associated background threads if the
        // running expression is finished (that is, when the thread is
        // guaranteed to finish soon). Blocking waits should always join, even
        // in the presence of errors.
        matches!(self, WaitMode::Blocking) || matches!(expression_result, Ok(Some(_)))
    }
}

#[cfg(windows)]
fn canonicalize_env_var_name(name: OsString) -> OsString {
    // On Windows, because env vars are case-insensitive, we uppercase all env
    // var names. That makes assignments and deletions in our internal map work
    // the same way they would on the real environment.
    match name.into_string() {
        Ok(name) => name.to_uppercase().into(),
        // If the name isn't valid Unicode then just leave it as is.
        Err(name) => name,
    }
}

#[cfg(not(windows))]
fn canonicalize_env_var_name(name: OsString) -> OsString {
    // No-op on all other platforms.
    name
}

type ReaderThread = JoinHandle<io::Result<Vec<u8>>>;

#[derive(Debug)]
struct OutputCaptureContext {
    pair: OnceCell<(os_pipe::PipeReader, os_pipe::PipeWriter)>,
}

impl OutputCaptureContext {
    fn new() -> Self {
        Self {
            pair: OnceCell::new(),
        }
    }

    fn write_pipe(&self) -> io::Result<os_pipe::PipeWriter> {
        let (_, writer) = self.pair.get_or_try_init(os_pipe::pipe)?;
        writer.try_clone()
    }

    // Only spawn a read thread if the write pipe was used.
    fn maybe_read_thread(self) -> Option<ReaderThread> {
        if let Some((mut reader, _)) = self.pair.into_inner() {
            Some(std::thread::spawn(move || {
                let mut output = Vec::new();
                reader.read_to_end(&mut output)?;
                Ok(output)
            }))
        } else {
            None
        }
    }
}

/// An incremental reader created with the
/// [`Expression::reader`](struct.Expression.html#method.reader) method.
///
/// When this reader reaches EOF, it automatically calls
/// [`wait`](struct.Handle.html#method.wait) on the inner handle. If the child
/// returns a non-zero exit status, the read at EOF will return an error,
/// unless you use [`unchecked`](struct.Expression.html#method.unchecked).
///
/// If the reader is dropped before reaching EOF, it calls
/// [`kill`](struct.ReaderHandle.html#method.kill) in its destructor.
///
/// Both `ReaderHandle` and `&ReaderHandle` implement
/// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html). That
/// makes it possible for one thread to
/// [`kill`](struct.ReaderHandle.html#method.kill) the `ReaderHandle` while
/// another thread is reading it. That can be useful for effectively canceling
/// the read and unblocking the reader thread. However, note that killed child
/// processes return a non-zero exit status, which is an error for the reader
/// by default, unless you use
/// [`unchecked`](struct.Expression.html#method.unchecked).
///
/// # Example
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # if cfg!(not(windows)) {
/// use duct::cmd;
/// use duct::ReaderHandle;
/// use std::sync::Arc;
/// use std::io::prelude::*;
///
/// // This child process prints a single byte and then sleeps.
/// //
/// // CAUTION: Using Bash for this example would probably hang, because Bash
/// // would spawn a `sleep` grandchild processes, and that grandchild wouldn't
/// // receive the kill signal.
/// let python_child = "\
/// import sys
/// import time
/// print()
/// sys.stdout.flush()
/// time.sleep(24 * 60 * 60)
/// ";
/// let reader: ReaderHandle = cmd!("python3", "-c", python_child)
///     .unchecked()
///     .reader()?;
///
/// // Spawn two threads that both try to read the single byte. Whichever one
/// // succeeds then calls kill() to unblock the other.
/// let arc_reader: Arc<ReaderHandle> = Arc::new(reader);
/// let mut threads = Vec::new();
/// for _ in 0..2 {
///     let arc_reader = arc_reader.clone();
///     threads.push(std::thread::spawn(move || -> std::io::Result<()> {
///         let mut single_byte = [0u8];
///         (&*arc_reader).read(&mut single_byte)?;
///         arc_reader.kill()?;
///         Ok(())
///     }));
/// }
///
/// // Join both threads. Because of the kill() above, both threads will exit
/// // quickly.
/// for thread in threads {
///     thread.join().unwrap()?;
/// }
/// # }
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct ReaderHandle {
    handle: Handle,
    reader: os_pipe::PipeReader,
}

impl ReaderHandle {
    /// Check whether the underlying expression is finished. This is equivalent
    /// to [`Handle::try_wait`](struct.Handle.html#method.try_wait). If the
    /// `ReaderHandle` has indicated EOF successfully, then it's guaranteed
    /// that this method will return `Ok(Some(_))`.
    ///
    /// Note that the
    /// [`stdout`](https://doc.rust-lang.org/std/process/struct.Output.html#structfield.stdout)
    /// field of the returned
    /// [`Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
    /// will always be empty, because the `ReaderHandle` itself owns the
    /// child's stdout pipe.
    pub fn try_wait(&self) -> io::Result<Option<&Output>> {
        self.handle.try_wait()
    }

    /// Kill the underlying expression and await all the child processes.
    ///
    /// Any errors that would normally result from a non-zero exit status are
    /// ignored during this wait, as with
    /// [`Handle::kill`](struct.Handle.html#method.kill).
    ///
    /// Note that as with
    /// [`std::process::Child::kill`](https://doc.rust-lang.org/beta/std/process/struct.Child.html#method.kill),
    /// this does not kill any grandchild processes that the children have
    /// spawned on their own. It only kills the child processes that Duct
    /// spawned itself. This is **especially relevant** for `ReaderHandle`,
    /// because if you're using `kill` to unblock another thread that's
    /// reading, an unkilled grandchild process might keep the child's stdout
    /// pipe open and keep your reader thread blocked. For that use case, you
    /// need to ensure that any grandchild processes your child might spawn are
    /// going to be short-lived. See
    /// [`gotchas.md`](https://github.com/oconnor663/duct.py/blob/master/gotchas.md)
    /// for an extensive discussion of these issues.
    pub fn kill(&self) -> io::Result<()> {
        self.handle.kill()
    }

    /// Return a `Vec<u32>` containing the PIDs of all of the child processes.
    /// The PIDs are given in pipeline order, from left to right.
    pub fn pids(&self) -> Vec<u32> {
        self.handle.pids()
    }
}

impl<'a> Read for &'a ReaderHandle {
    /// Note that if you don't use
    /// [`unchecked`](struct.Expression.html#method.unchecked), and the child
    /// returns a non-zero exit status, the final call to `read` will return an
    /// error, just as [`run`](struct.Expression.html#method.run) would.
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        let n = (&self.reader).read(buf)?;
        if n == 0 && !buf.is_empty() {
            // EOF detected. Wait on the child to clean it up before returning.
            self.handle.wait()?;
        }
        Ok(n)
    }
}

impl Read for ReaderHandle {
    /// Note that if you don't use
    /// [`unchecked`](struct.Expression.html#method.unchecked), and the child
    /// returns a non-zero exit status, the final call to `read` will return an
    /// error, just as [`run`](struct.Expression.html#method.run) would.
    fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
        (&*self).read(buf)
    }
}

impl Drop for ReaderHandle {
    fn drop(&mut self) {
        // Just call kill() unconditionally. If wait() has already happened,
        // this has no effect.
        let _ = self.handle.kill();
    }
}

#[cfg(test)]
mod test;