duct/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061
//! Duct is a library for running child processes. Duct makes it easy to build
//! pipelines and redirect IO like a shell. At the same time, Duct helps you
//! write correct, portable code: whitespace is never significant, errors from
//! child processes get reported by default, and a variety of [gotchas, bugs,
//! and platform
//! inconsistencies](https://github.com/oconnor663/duct.py/blob/master/gotchas.md)
//! are handled for you the Right Wayâ„¢.
//!
//! - [Documentation](https://docs.rs/duct)
//! - [Crate](https://crates.io/crates/duct)
//! - [GitHub repo](https://github.com/oconnor663/duct.rs)
//! - [the same library, in Python](https://github.com/oconnor663/duct.py)
//!
//! Examples
//! --------
//!
//! Run a command without capturing any output. Here "hi" is printed directly
//! to the terminal:
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! use duct::cmd;
//! cmd!("echo", "hi").run()?;
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Capture the standard output of a command. Here "hi" is returned as a
//! `String`:
//!
//! ```
//! # use duct::cmd;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! let stdout = cmd!("echo", "hi").read()?;
//! assert_eq!(stdout, "hi");
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Capture the standard output of a pipeline:
//!
//! ```
//! # use duct::cmd;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! let stdout = cmd!("echo", "hi").pipe(cmd!("sed", "s/i/o/")).read()?;
//! assert_eq!(stdout, "ho");
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Merge standard error into standard output and read both incrementally:
//!
//! ```
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! use duct::cmd;
//! use std::io::prelude::*;
//! use std::io::BufReader;
//!
//! let big_cmd = cmd!("bash", "-c", "echo out && echo err 1>&2");
//! let reader = big_cmd.stderr_to_stdout().reader()?;
//! let mut lines = BufReader::new(reader).lines();
//! assert_eq!(lines.next().unwrap()?, "out");
//! assert_eq!(lines.next().unwrap()?, "err");
//! # }
//! # Ok(())
//! # }
//! ```
//!
//! Children that exit with a non-zero status return an error by default:
//!
//! ```
//! # use duct::cmd;
//! # fn main() -> Result<(), Box<dyn std::error::Error>> {
//! # if cfg!(not(windows)) {
//! let result = cmd!("false").run();
//! assert!(result.is_err());
//! let result = cmd!("false").unchecked().run();
//! assert!(result.is_ok());
//! # }
//! # Ok(())
//! # }
//! ```
use once_cell::sync::OnceCell;
use shared_child::SharedChild;
use std::collections::HashMap;
use std::ffi::{OsStr, OsString};
use std::fmt;
use std::fs::File;
use std::io;
use std::io::prelude::*;
use std::mem;
use std::path::{Path, PathBuf};
use std::process::{Command, ExitStatus, Output, Stdio};
use std::sync::{Arc, Mutex};
use std::thread::JoinHandle;
#[cfg(not(windows))]
use std::os::unix::prelude::*;
#[cfg(windows)]
use std::os::windows::prelude::*;
/// Unix-specific extensions to duct, for sending signals.
#[cfg(unix)]
pub mod unix;
// enums defined below
use ExpressionInner::*;
use IoExpressionInner::*;
/// Create a command given a program name and a collection of arguments. See
/// also the [`cmd!`](macro.cmd.html) macro, which doesn't require a collection.
///
/// # Example
///
/// ```
/// use duct::cmd;
///
/// let args = vec!["foo", "bar", "baz"];
///
/// # // NOTE: Normally this wouldn't work on Windows, but we have an "echo"
/// # // binary that gets built for our main tests, and it's sitting around by
/// # // the time we get here. If this ever stops working, then we can disable
/// # // the tests that depend on it.
/// let output = cmd("echo", &args).read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// ```
pub fn cmd<T, U>(program: T, args: U) -> Expression
where
T: IntoExecutablePath,
U: IntoIterator,
U::Item: Into<OsString>,
{
let mut argv_vec = Vec::new();
argv_vec.push(program.to_executable());
argv_vec.extend(args.into_iter().map(Into::<OsString>::into));
Expression::new(Cmd(argv_vec))
}
/// Create a command with any number of of positional arguments, which may be
/// different types (anything that implements
/// [`Into<OsString>`](https://doc.rust-lang.org/std/convert/trait.From.html)).
/// See also the [`cmd`](fn.cmd.html) function, which takes a collection of
/// arguments.
///
/// # Example
///
/// ```
/// use duct::cmd;
/// use std::path::Path;
///
/// let arg1 = "foo";
/// let arg2 = "bar".to_owned();
/// let arg3 = Path::new("baz");
///
/// let output = cmd!("echo", arg1, arg2, arg3).read();
///
/// assert_eq!("foo bar baz", output.unwrap());
/// ```
#[macro_export]
macro_rules! cmd {
( $program:expr $(, $arg:expr )* $(,)? ) => {
{
use std::ffi::OsString;
let args: std::vec::Vec<OsString> = std::vec![$( Into::<OsString>::into($arg) ),*];
$crate::cmd($program, args)
}
};
}
/// The central objects in Duct, Expressions are created with
/// [`cmd`](fn.cmd.html) or [`cmd!`](macro.cmd.html), combined with
/// [`pipe`](struct.Expression.html#method.pipe), and finally executed with
/// [`run`](struct.Expression.html#method.run),
/// [`read`](struct.Expression.html#method.read),
/// [`start`](struct.Expression.html#method.start), or
/// [`reader`](struct.Expression.html#method.reader). They also support several
/// methods to control their execution, like
/// [`stdin_bytes`](struct.Expression.html#method.stdin_bytes),
/// [`stdout_capture`](struct.Expression.html#method.stdout_capture),
/// [`env`](struct.Expression.html#method.env), and
/// [`unchecked`](struct.Expression.html#method.unchecked).
///
/// Expressions are immutable, and they do a lot of
/// [`Arc`](https://doc.rust-lang.org/std/sync/struct.Arc.html) sharing
/// internally, so all of the methods below take `&self` and return a new
/// `Expression` cheaply.
///
/// Expressions using `pipe` form trees, and the order in which you call
/// different methods can matter, just like it matters where you put
/// redirections in Bash. For example, each of these expressions suppresses
/// output differently:
///
/// ```no_run
/// # use duct::cmd;
/// # fn main() -> std::io::Result<()> {
/// // Only suppress stderr on the left side.
/// cmd!("foo").stderr_null().pipe(cmd!("bar")).run()?;
///
/// // Only suppress stderr on the right side.
/// cmd!("foo").pipe(cmd!("bar").stderr_null()).run()?;
///
/// // Suppress stderr on both sides.
/// cmd!("foo").pipe(cmd!("bar")).stderr_null().run()?;
/// # Ok(())
/// # }
/// ```
#[derive(Clone)]
#[must_use]
pub struct Expression(Arc<ExpressionInner>);
impl Expression {
/// Execute an expression, wait for it to complete, and return a
/// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
/// object containing the results. Nothing is captured by default, but if
/// you build the expression with
/// [`stdout_capture`](struct.Expression.html#method.stdout_capture) or
/// [`stderr_capture`](struct.Expression.html#method.stderr_capture) then
/// the `Output` will hold those captured bytes.
///
/// # Errors
///
/// In addition to all the IO errors possible with
/// [`std::process::Command`](https://doc.rust-lang.org/std/process/struct.Command.html),
/// `run` will return an
/// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
/// IO error if child returns a non-zero exit status. To suppress this error
/// and return an `Output` even when the exit status is non-zero, use the
/// [`unchecked`](struct.Expression.html#method.unchecked) method.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("echo", "hi").stdout_capture().run().unwrap();
/// assert_eq!(b"hi\n".to_vec(), output.stdout);
/// # }
/// # }
/// ```
pub fn run(&self) -> io::Result<Output> {
// This could be optimized to avoid creating a background threads, by
// using the current thread to read stdout or stderr if only one of
// them is captured, or by using async IO to read both.
self.start()?.into_output()
}
/// Execute an expression, capture its standard output, and return the
/// captured output as a `String`. This is a convenience wrapper around
/// [`reader`](struct.Expression.html#method.reader). Like backticks and
/// `$()` in the shell, `read` trims trailing newlines.
///
/// # Errors
///
/// In addition to all the errors possible with
/// [`run`](struct.Expression.html#method.run), `read` will return an error
/// if the captured bytes aren't valid UTF-8.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("echo", "hi").stdout_capture().read().unwrap();
/// assert_eq!("hi", output);
/// # }
/// # }
/// ```
pub fn read(&self) -> io::Result<String> {
let mut reader = self.reader()?;
let mut output = String::new();
reader.read_to_string(&mut output)?;
while output.ends_with('\n') || output.ends_with('\r') {
output.truncate(output.len() - 1);
}
Ok(output)
}
/// Start running an expression, and immediately return a
/// [`Handle`](struct.Handle.html) that represents all the child processes.
/// This is analogous to the
/// [`spawn`](https://doc.rust-lang.org/std/process/struct.Command.html#method.spawn)
/// method in the standard library. The `Handle` may be shared between
/// multiple threads.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let handle = cmd!("echo", "hi").stdout_capture().start().unwrap();
/// let output = handle.wait().unwrap();
/// assert_eq!(b"hi\n".to_vec(), output.stdout);
/// # }
/// # }
/// ```
pub fn start(&self) -> io::Result<Handle> {
let stdout_capture = OutputCaptureContext::new();
let stderr_capture = OutputCaptureContext::new();
let context = IoContext::new(&stdout_capture, &stderr_capture);
Ok(Handle {
inner: self.0.start(context)?,
result: OnceCell::new(),
readers: Mutex::new((
stdout_capture.maybe_read_thread(),
stderr_capture.maybe_read_thread(),
)),
})
}
/// Start running an expression, and immediately return a
/// [`ReaderHandle`](struct.ReaderHandle.html) attached to the child's
/// stdout. This is similar to `.stdout_capture().start()`, but it returns
/// the reader to the caller rather than reading from a background thread.
///
/// Note that because this method doesn't read child output on a background
/// thread, it's a best practice to only create one `ReaderHandle` at a
/// time. Child processes with a lot of output will eventually block if
/// their stdout pipe isn't read from. If you have multiple children
/// running, but you're only reading from one of them at a time, that could
/// block the others and lead to performance issues or deadlocks. For
/// reading from multiple children at once, prefer
/// `.stdout_capture().start()`.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # use std::io::prelude::*;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let mut reader = cmd!("echo", "hi").reader().unwrap();
/// let mut stdout = Vec::new();
/// reader.read_to_end(&mut stdout).unwrap();
/// assert_eq!(b"hi\n".to_vec(), stdout);
/// # }
/// # }
/// ```
pub fn reader(&self) -> io::Result<ReaderHandle> {
let stdout_capture = OutputCaptureContext::new();
let stderr_capture = OutputCaptureContext::new();
let context = IoContext::new(&stdout_capture, &stderr_capture);
let handle = Handle {
inner: self.stdout_capture().0.start(context)?,
result: OnceCell::new(),
readers: Mutex::new((None, stderr_capture.maybe_read_thread())),
};
Ok(ReaderHandle {
handle,
reader: stdout_capture.pair.into_inner().expect("pipe opened").0,
})
}
/// Join two expressions into a pipe expression, where the standard output
/// of the left will be hooked up to the standard input of the right, like
/// `|` in the shell.
///
/// # Errors
///
/// During execution, if one side of the pipe returns a non-zero exit
/// status, that becomes the status of the whole pipe, similar to Bash's
/// `pipefail` option. If both sides return non-zero, and one of them is
/// [`unchecked`](struct.Expression.html#method.unchecked), then the checked
/// side wins. Otherwise the right side wins.
///
/// During spawning, if the left side of the pipe spawns successfully, but
/// the right side fails to spawn, the left side will be killed and
/// awaited. That's necessary to return the spawn error immediately,
/// without leaking the left side as a zombie.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("echo", "hi").pipe(cmd!("sed", "s/h/p/")).read();
/// assert_eq!("pi", output.unwrap());
/// # }
/// # }
/// ```
pub fn pipe<T: Into<Expression>>(&self, right: T) -> Expression {
Self::new(Pipe(self.clone(), right.into()))
}
/// Use bytes or a string as input for an expression, like `<<<` in the
/// shell. A worker thread will write the input at runtime.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// // Many types implement Into<Vec<u8>>. Here's a string.
/// let output = cmd!("cat").stdin_bytes("foo").read().unwrap();
/// assert_eq!("foo", output);
///
/// // And here's a byte slice.
/// let output = cmd!("cat").stdin_bytes(&b"foo"[..]).read().unwrap();
/// assert_eq!("foo", output);
/// # }
/// # }
/// ```
pub fn stdin_bytes<T: Into<Vec<u8>>>(&self, bytes: T) -> Expression {
Self::new(Io(StdinBytes(Arc::new(bytes.into())), self.clone()))
}
/// Open a file at the given path and use it as input for an expression,
/// like `<` in the shell.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// // Many types implement Into<PathBuf>, including &str.
/// let output = cmd!("head", "-c", "3").stdin_path("/dev/zero").read().unwrap();
/// assert_eq!("\0\0\0", output);
/// # }
/// # }
/// ```
pub fn stdin_path<T: Into<PathBuf>>(&self, path: T) -> Expression {
Self::new(Io(StdinPath(path.into()), self.clone()))
}
/// Use an already opened file or pipe as input for an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let input_file = std::fs::File::open("/dev/zero").unwrap();
/// let output = cmd!("head", "-c", "3").stdin_file(input_file).read().unwrap();
/// assert_eq!("\0\0\0", output);
/// # }
/// # }
/// ```
#[cfg(not(windows))]
pub fn stdin_file<T: IntoRawFd>(&self, file: T) -> Expression {
Self::new(Io(StdinFile(into_file(file)), self.clone()))
}
#[cfg(windows)]
pub fn stdin_file<T: IntoRawHandle>(&self, file: T) -> Expression {
Self::new(Io(StdinFile(into_file(file)), self.clone()))
}
/// Use `/dev/null` (or `NUL` on Windows) as input for an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("cat").stdin_null().read().unwrap();
/// assert_eq!("", output);
/// # }
/// # }
/// ```
pub fn stdin_null(&self) -> Expression {
Self::new(Io(StdinNull, self.clone()))
}
/// Open a file at the given path and use it as output for an expression,
/// like `>` in the shell.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # use std::io::prelude::*;
/// # if cfg!(not(windows)) {
/// // Many types implement Into<PathBuf>, including &str.
/// let path = cmd!("mktemp").read().unwrap();
/// cmd!("echo", "wee").stdout_path(&path).run().unwrap();
/// let mut output = String::new();
/// std::fs::File::open(&path).unwrap().read_to_string(&mut output).unwrap();
/// assert_eq!("wee\n", output);
/// # }
/// # }
/// ```
pub fn stdout_path<T: Into<PathBuf>>(&self, path: T) -> Expression {
Self::new(Io(StdoutPath(path.into()), self.clone()))
}
/// Use an already opened file or pipe as output for an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # use std::io::prelude::*;
/// # if cfg!(not(windows)) {
/// let path = cmd!("mktemp").read().unwrap();
/// let file = std::fs::File::create(&path).unwrap();
/// cmd!("echo", "wee").stdout_file(file).run().unwrap();
/// let mut output = String::new();
/// std::fs::File::open(&path).unwrap().read_to_string(&mut output).unwrap();
/// assert_eq!("wee\n", output);
/// # }
/// # }
/// ```
#[cfg(not(windows))]
pub fn stdout_file<T: IntoRawFd>(&self, file: T) -> Expression {
Self::new(Io(StdoutFile(into_file(file)), self.clone()))
}
#[cfg(windows)]
pub fn stdout_file<T: IntoRawHandle>(&self, file: T) -> Expression {
Self::new(Io(StdoutFile(into_file(file)), self.clone()))
}
/// Use `/dev/null` (or `NUL` on Windows) as output for an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// // This echo command won't print anything.
/// cmd!("echo", "foo", "bar", "baz").stdout_null().run().unwrap();
///
/// // And you won't get anything even if you try to read its output! The
/// // null redirect happens farther down in the expression tree than the
/// // implicit `stdout_capture`, and so it takes precedence.
/// let output = cmd!("echo", "foo", "bar", "baz").stdout_null().read().unwrap();
/// assert_eq!("", output);
/// # }
/// ```
pub fn stdout_null(&self) -> Expression {
Self::new(Io(StdoutNull, self.clone()))
}
/// Capture the standard output of an expression. The captured bytes will
/// be available on the `stdout` field of the
/// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
/// object returned by [`run`](struct.Expression.html#method.run) or
/// [`wait`](struct.Handle.html#method.wait). Output is read by a
/// background thread, so the child will never block writing to stdout. But
/// note that [`read`](struct.Expression.html#method.read) and
/// [`reader`](struct.Expression.html#method.reader) can be more
/// convenient, and they don't require the background thread.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// // The most direct way to read stdout bytes is `stdout_capture`.
/// let output1 = cmd!("echo", "foo").stdout_capture().run().unwrap().stdout;
/// assert_eq!(&b"foo\n"[..], &output1[..]);
///
/// // The `read` method is a shorthand for `stdout_capture`, and it also
/// // does string parsing and newline trimming.
/// let output2 = cmd!("echo", "foo").read().unwrap();
/// assert_eq!("foo", output2)
/// # }
/// # }
/// ```
pub fn stdout_capture(&self) -> Expression {
Self::new(Io(StdoutCapture, self.clone()))
}
/// Join the standard output of an expression to its standard error pipe,
/// similar to `1>&2` in the shell.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("echo", "foo").stdout_to_stderr().stderr_capture().run().unwrap();
/// assert_eq!(&b"foo\n"[..], &output.stderr[..]);
/// # }
/// # }
/// ```
pub fn stdout_to_stderr(&self) -> Expression {
Self::new(Io(StdoutToStderr, self.clone()))
}
/// Open a file at the given path and use it as error output for an
/// expression, like `2>` in the shell.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # use std::io::prelude::*;
/// # if cfg!(not(windows)) {
/// // Many types implement Into<PathBuf>, including &str.
/// let path = cmd!("mktemp").read().unwrap();
/// cmd!("sh", "-c", "echo wee >&2").stderr_path(&path).run().unwrap();
/// let mut error_output = String::new();
/// std::fs::File::open(&path).unwrap().read_to_string(&mut error_output).unwrap();
/// assert_eq!("wee\n", error_output);
/// # }
/// # }
/// ```
pub fn stderr_path<T: Into<PathBuf>>(&self, path: T) -> Expression {
Self::new(Io(StderrPath(path.into()), self.clone()))
}
/// Use an already opened file or pipe as error output for an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # use std::io::prelude::*;
/// # if cfg!(not(windows)) {
/// let path = cmd!("mktemp").read().unwrap();
/// let file = std::fs::File::create(&path).unwrap();
/// cmd!("sh", "-c", "echo wee >&2").stderr_file(file).run().unwrap();
/// let mut error_output = String::new();
/// std::fs::File::open(&path).unwrap().read_to_string(&mut error_output).unwrap();
/// assert_eq!("wee\n", error_output);
/// # }
/// # }
/// ```
#[cfg(not(windows))]
pub fn stderr_file<T: IntoRawFd>(&self, file: T) -> Expression {
Self::new(Io(StderrFile(into_file(file)), self.clone()))
}
#[cfg(windows)]
pub fn stderr_file<T: IntoRawHandle>(&self, file: T) -> Expression {
Self::new(Io(StderrFile(into_file(file)), self.clone()))
}
/// Use `/dev/null` (or `NUL` on Windows) as error output for an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// // This echo-to-stderr command won't print anything.
/// cmd!("sh", "-c", "echo foo bar baz >&2").stderr_null().run().unwrap();
/// # }
/// # }
/// ```
pub fn stderr_null(&self) -> Expression {
Self::new(Io(StderrNull, self.clone()))
}
/// Capture the error output of an expression. The captured bytes will be
/// available on the `stderr` field of the `Output` object returned by
/// [`run`](struct.Expression.html#method.run) or
/// [`wait`](struct.Handle.html#method.wait). Output is read by a
/// background thread, so the child will never block writing to stderr.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output_obj = cmd!("sh", "-c", "echo foo >&2").stderr_capture().run().unwrap();
/// assert_eq!(&b"foo\n"[..], &output_obj.stderr[..]);
/// # }
/// # }
/// ```
pub fn stderr_capture(&self) -> Expression {
Self::new(Io(StderrCapture, self.clone()))
}
/// Join the standard error of an expression to its standard output pipe,
/// similar to `2>&1` in the shell.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let error_output = cmd!("sh", "-c", "echo foo >&2").stderr_to_stdout().read().unwrap();
/// assert_eq!("foo", error_output);
/// # }
/// # }
/// ```
pub fn stderr_to_stdout(&self) -> Expression {
Self::new(Io(StderrToStdout, self.clone()))
}
/// Swap the stdout and stderr of an expression.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("sh", "-c", "echo foo && echo bar >&2")
/// .stdout_stderr_swap()
/// .stdout_capture()
/// .stderr_capture()
/// .run()
/// .unwrap();
/// assert_eq!(b"bar\n", &*output.stdout);
/// assert_eq!(b"foo\n", &*output.stderr);
/// # }
/// # }
/// ```
pub fn stdout_stderr_swap(&self) -> Expression {
Self::new(Io(StdoutStderrSwap, self.clone()))
}
/// Set the working directory where the expression will execute.
///
/// Note that in some languages (Rust and Python at least), there are
/// tricky platform differences in the way relative exe paths interact with
/// child working directories. In particular, the exe path will be
/// interpreted relative to the child dir on Unix, but relative to the
/// parent dir on Windows. Duct prefers the Windows behavior, and in order
/// to get that behavior on all platforms it calls
/// [`std::fs::canonicalize`](https://doc.rust-lang.org/std/fs/fn.canonicalize.html)
/// on relative exe paths when `dir` is in use. Paths in this sense are any
/// program name containing a path separator, regardless of the type. (Note
/// also that `Path` and `PathBuf` program names get a `./` prepended to
/// them automatically by the
/// [`IntoExecutablePath`](trait.IntoExecutablePath.html) trait, and so
/// will always contain a separator.)
///
/// # Errors
///
/// Canonicalization can fail on some filesystems, or if the current
/// directory has been removed, and
/// [`run`](struct.Expression.html#method.run) will return those errors
/// rather than trying any sneaky workarounds.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("pwd").dir("/").read().unwrap();
/// assert_eq!("/", output);
/// # }
/// # }
/// ```
pub fn dir<T: Into<PathBuf>>(&self, path: T) -> Expression {
Self::new(Io(Dir(path.into()), self.clone()))
}
/// Set a variable in the expression's environment.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// let output = cmd!("sh", "-c", "echo $FOO").env("FOO", "bar").read().unwrap();
/// assert_eq!("bar", output);
/// # }
/// # }
/// ```
pub fn env<T, U>(&self, name: T, val: U) -> Expression
where
T: Into<OsString>,
U: Into<OsString>,
{
Self::new(Io(
Env(canonicalize_env_var_name(name.into()), val.into()),
self.clone(),
))
}
/// Remove a variable from the expression's environment.
///
/// Note that all the environment functions try to do whatever the platform
/// does with respect to case sensitivity. That means that
/// `env_remove("foo")` will unset the uppercase variable `FOO` on Windows,
/// but not on Unix.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # if cfg!(not(windows)) {
/// std::env::set_var("TESTING", "true");
/// let output = cmd!("sh", "-c", "echo a${TESTING}b")
/// .env_remove("TESTING")
/// .read()
/// .unwrap();
/// assert_eq!("ab", output);
/// # }
/// # }
/// ```
pub fn env_remove<T>(&self, name: T) -> Expression
where
T: Into<OsString>,
{
Self::new(Io(
EnvRemove(canonicalize_env_var_name(name.into())),
self.clone(),
))
}
/// Set the expression's entire environment, from a collection of
/// name-value pairs (like a `HashMap`). Note that some environment
/// variables are required for normal program execution (like `SystemRoot`
/// on Windows), so copying the parent's environment is usually preferable
/// to starting with an empty one.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// # use std::collections::HashMap;
/// # if cfg!(not(windows)) {
/// let mut env_map: HashMap<_, _> = std::env::vars().collect();
/// env_map.insert("FOO".into(), "bar".into());
/// let output = cmd!("sh", "-c", "echo $FOO").full_env(&env_map).read().unwrap();
/// assert_eq!("bar", output);
/// // The IntoIterator/Into<OsString> bounds are pretty flexible. Passing
/// // by value works here too.
/// let output = cmd!("sh", "-c", "echo $FOO").full_env(env_map).read().unwrap();
/// assert_eq!("bar", output);
/// # }
/// # }
/// ```
pub fn full_env<T, U, V>(&self, name_vals: T) -> Expression
where
T: IntoIterator<Item = (U, V)>,
U: Into<OsString>,
V: Into<OsString>,
{
let env_map = name_vals
.into_iter()
.map(|(k, v)| (canonicalize_env_var_name(k.into()), v.into()))
.collect();
Self::new(Io(FullEnv(env_map), self.clone()))
}
/// Prevent a non-zero exit status from causing
/// [`run`](struct.Expression.html#method.run) or
/// [`read`](struct.Expression.html#method.read) to return an error. The
/// unchecked exit code will still be there on the `Output` returned by
/// `run`; its value doesn't change.
///
/// "Uncheckedness" sticks to an exit code as it bubbles up through
/// complicated pipelines, but it doesn't "infect" other exit codes. So for
/// example, if only one sub-expression in a pipe has `unchecked`, then
/// errors returned by the other side will still be checked. That said,
/// most commonly you'll just call `unchecked` right before `run`, and
/// it'll apply to an entire expression.
///
/// # Example
///
/// Note the differences among these three cases:
///
/// ```no_run
/// # use duct::cmd;
/// # fn main() -> std::io::Result<()> {
/// // Don't check errors on the left side.
/// cmd!("foo").unchecked().pipe(cmd!("bar")).run()?;
///
/// // Don't check errors on the right side.
/// cmd!("foo").pipe(cmd!("bar").unchecked()).run()?;
///
/// // Don't check errors on either side.
/// cmd!("foo").pipe(cmd!("bar")).unchecked().run()?;
/// # Ok(())
/// # }
/// ```
pub fn unchecked(&self) -> Expression {
Self::new(Io(Unchecked, self.clone()))
}
/// Add a hook for modifying
/// [`std::process::Command`](https://doc.rust-lang.org/std/process/struct.Command.html)
/// objects immediately before they're executed.
///
/// The hook is called for each command in its sub-expression, and each time the expression is
/// executed. The call happens after other features like `stdout` and `env` have been applied,
/// so any changes made by the hook take priority. More than one hook can be added, in which
/// case the innermost is executed last. For example, if one call to `before_spawn` is applied
/// to an entire pipe expression, and another call is applied to just one command within the
/// pipe, the hook for the entire pipeline will be called first over the command where both
/// hooks apply.
///
/// This is intended for rare and tricky cases, like callers who want to change the group ID of
/// their child processes, or who want to run code in `before_exec`. Most callers shouldn't
/// need to use it.
///
/// # Example
///
/// ```
/// # use duct::cmd;
/// # fn main() {
/// let output = cmd!("echo", "foo")
/// .before_spawn(|cmd| {
/// // Sneakily add an extra argument.
/// cmd.arg("bar");
/// Ok(())
/// })
/// .read()
/// .unwrap();
/// assert_eq!("foo bar", output);
/// # }
/// ```
pub fn before_spawn<F>(&self, hook: F) -> Expression
where
F: Fn(&mut Command) -> io::Result<()> + Send + Sync + 'static,
{
Self::new(Io(BeforeSpawn(BeforeSpawnHook::new(hook)), self.clone()))
}
fn new(inner: ExpressionInner) -> Expression {
Expression(Arc::new(inner))
}
}
// Delegate to the ExpressionInner for debug formatting. This avoids printing
// redundant Expression() constructors around everything.
impl fmt::Debug for Expression {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
self.0.fmt(f)
}
}
// Implementing Into<Expression> for references lets us accept both references
// and values in `pipe`.
impl<'a> From<&'a Expression> for Expression {
fn from(expr: &Expression) -> Expression {
expr.clone()
}
}
/// A handle to a running expression, returned by the
/// [`start`](struct.Expression.html#method.start) method.
///
/// Calling `start` followed by
/// [`into_output`](struct.Handle.html#method.into_output) on the handle is
/// equivalent to [`run`](struct.Expression.html#method.run). Note that unlike
/// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
/// most of the methods on `Handle` take `&self` rather than `&mut self`, and a
/// `Handle` may be shared between multiple threads.
///
/// Like `std::process::Child`, `Handle` doesn't do anything special in its
/// destructor. If you drop a handle without waiting on it, child processes and
/// background IO threads will keep running, and the children will become
/// [zombie processes](https://en.wikipedia.org/wiki/Zombie_process) when they
/// exit. That's a resource leak, similar to leaking memory or file handles.
/// Note that in contrast to `Handle`, a
/// [`ReaderHandle`](struct.ReaderHandle.html) kills child processes in its
/// destructor, to avoid creating zombies.
///
/// See the [`shared_child`](https://github.com/oconnor663/shared_child.rs)
/// crate for implementation details behind making handles thread safe.
#[derive(Debug)]
pub struct Handle {
inner: HandleInner,
result: OnceCell<(ExpressionStatus, Output)>,
readers: Mutex<(Option<ReaderThread>, Option<ReaderThread>)>,
}
impl Handle {
/// Wait for the running expression to finish, and return a reference to its
/// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html).
/// Multiple threads may wait at the same time.
///
/// # Errors
///
/// In addition to all the IO errors possible with
/// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
/// `wait` will return an
/// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
/// IO error if child returns a non-zero exit status. To suppress this
/// error and return an `Output` even when the exit status is non-zero, use
/// the [`unchecked`](struct.Expression.html#method.unchecked) method.
pub fn wait(&self) -> io::Result<&Output> {
// Await the children and any threads that are reading their output.
// Another caller may already have done this.
let (expression_status, output) = wait_on_handle_and_output(self)?;
// If the child returned a non-zero exit status, and that's a checked
// error, return the error.
if expression_status.is_checked_error() {
return Err(io::Error::new(
io::ErrorKind::Other,
expression_status.message(),
));
}
Ok(output)
}
/// Check whether the running expression is finished. If it is, return a
/// reference to its
/// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html).
/// If it's still running, return `Ok(None)`.
///
/// # Errors
///
/// In addition to all the IO errors possible with
/// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
/// `try_wait` will return an
/// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
/// IO error if child returns a non-zero exit status. To suppress this
/// error and return an `Output` even when the exit status is non-zero, use
/// the [`unchecked`](struct.Expression.html#method.unchecked) method.
pub fn try_wait(&self) -> io::Result<Option<&Output>> {
if self.inner.wait(WaitMode::Nonblocking)?.is_none() {
Ok(None)
} else {
self.wait().map(Some)
}
}
/// Wait for the running expression to finish, and then return a
/// [`std::process::Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
/// object containing the results, including any captured output. This
/// consumes the `Handle`. Calling
/// [`start`](struct.Expression.html#method.start) followed by
/// `into_output` is equivalent to
/// [`run`](struct.Expression.html#method.run).
///
/// # Errors
///
/// In addition to all the IO errors possible with
/// [`std::process::Child`](https://doc.rust-lang.org/std/process/struct.Child.html),
/// `into_output` will return an
/// [`ErrorKind::Other`](https://doc.rust-lang.org/std/io/enum.ErrorKind.html)
/// IO error if child returns a non-zero exit status. To suppress this
/// error and return an `Output` even when the exit status is non-zero, use
/// the [`unchecked`](struct.Expression.html#method.unchecked) method.
pub fn into_output(self) -> io::Result<Output> {
self.wait()?;
let (_, output) = self.result.into_inner().expect("result missing");
Ok(output)
}
/// Kill the running expression and await all the child processes. Any
/// errors that would normally result from a non-zero exit status are
/// ignored, as with
/// [`unchecked`](struct.Expression.html#method.unchecked).
///
/// Note that as with
/// [`std::process::Child::kill`](https://doc.rust-lang.org/beta/std/process/struct.Child.html#method.kill),
/// this does not kill any grandchild processes that the children have
/// spawned on their own. It only kills the child processes that Duct
/// spawned itself. See
/// [`gotchas.md`](https://github.com/oconnor663/duct.py/blob/master/gotchas.md)
/// for an extensive discussion of this behavior.
pub fn kill(&self) -> io::Result<()> {
self.inner.kill()?;
// This wait cleans up the child but does not return an error for a
// non-zero exit status.
//
// Note that we *must not* call wait_on_handle_and_output here. There
// might be un-signaled grandchild processes holding the output pipe,
// and we can't expect them to exit promptly. We only want to reap our
// immediate zombie children here. See gotchas.md for more on why we
// can't do better.
self.inner.wait(WaitMode::Blocking)?;
Ok(())
}
/// Return a `Vec<u32>` containing the PIDs of all of the child processes.
/// The PIDs are given in pipeline order, from left to right.
pub fn pids(&self) -> Vec<u32> {
self.inner.pids()
}
}
// Does a blocking wait on the handle, if it hasn't been awaited yet. This
// includes collection the output results from reader threads. After calling
// this function, the result cell is guaranteed to be populated. This does not
// do any status checking.
fn wait_on_handle_and_output(handle: &Handle) -> io::Result<&(ExpressionStatus, Output)> {
// Take the reader threads lock and then see if a result has already been
// collected. Doing this check inside the lock avoids racing to fill the
// result if it's empty.
let mut readers_lock = handle.readers.lock().expect("readers lock poisoned");
if let Some(result) = handle.result.get() {
// This handle has already been waited on. Return the same result
// again.
Ok(result)
} else {
// This handle hasn't been waited on yet. Do that now. If waiting on
// the children returns an error, just short-circuit with that. This
// shouldn't really happen.
let status = handle
.inner
.wait(WaitMode::Blocking)?
.expect("blocking wait can't return None");
// Now that we have an exit status, we need to join the output reader
// threads, if any. We're already holding the lock that we need.
let (stdout_reader, stderr_reader) = &mut *readers_lock;
// If either of the reader threads returned an error, just
// short-circuit with that. Future calls to this function will panic.
// But this really shouldn't happen.
let stdout = stdout_reader
.take()
.map(|t| t.join().expect("stdout reader error"))
.unwrap_or(Ok(Vec::new()))?;
let stderr = stderr_reader
.take()
.map(|t| t.join().expect("stderr reader error"))
.unwrap_or(Ok(Vec::new()))?;
let output = Output {
status: status.status,
stdout,
stderr,
};
Ok(handle.result.get_or_init(|| (status, output)))
}
}
#[derive(Debug)]
enum ExpressionInner {
Cmd(Vec<OsString>),
Pipe(Expression, Expression),
Io(IoExpressionInner, Expression),
}
impl ExpressionInner {
fn start(&self, context: IoContext) -> io::Result<HandleInner> {
Ok(match self {
Cmd(argv) => HandleInner::Child(start_argv(argv, context)?),
Pipe(left, right) => {
HandleInner::Pipe(Box::new(PipeHandle::start(left, right, context)?))
}
Io(io_inner, expr) => start_io(io_inner, expr, context)?,
})
}
}
#[derive(Debug)]
enum HandleInner {
Child(ChildHandle),
// If the left side of a pipe fails to start, there's nothing to wait for,
// and we return an error immediately. But if the right side fails to start,
// the caller still needs to wait on the left, and we must return a handle.
// Thus the handle preserves the right side's errors here.
Pipe(Box<PipeHandle>),
StdinBytes(Box<StdinBytesHandle>),
Unchecked(Box<HandleInner>),
}
impl HandleInner {
fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
match self {
HandleInner::Child(child_handle) => child_handle.wait(mode),
HandleInner::Pipe(pipe_handle) => pipe_handle.wait(mode),
HandleInner::StdinBytes(stdin_bytes_handle) => stdin_bytes_handle.wait(mode),
HandleInner::Unchecked(inner_handle) => {
Ok(inner_handle.wait(mode)?.map(|mut status| {
status.checked = false;
status
}))
}
}
}
fn kill(&self) -> io::Result<()> {
match self {
HandleInner::Child(child_handle) => child_handle.kill(),
HandleInner::Pipe(pipe_handle) => pipe_handle.kill(),
HandleInner::StdinBytes(stdin_bytes_handle) => stdin_bytes_handle.kill(),
HandleInner::Unchecked(inner_handle) => inner_handle.kill(),
}
}
fn pids(&self) -> Vec<u32> {
match self {
HandleInner::Child(child_handle) => vec![child_handle.child.id()],
HandleInner::Pipe(pipe_handle) => pipe_handle.pids(),
HandleInner::StdinBytes(stdin_bytes_handle) => stdin_bytes_handle.inner_handle.pids(),
HandleInner::Unchecked(inner_handle) => inner_handle.pids(),
}
}
}
fn start_argv(argv: &[OsString], context: IoContext) -> io::Result<ChildHandle> {
let exe = canonicalize_exe_path_for_dir(&argv[0], &context)?;
let mut command = Command::new(exe);
command.args(&argv[1..]);
if !matches!(context.stdin, IoValue::ParentStdin) {
command.stdin(context.stdin.into_stdio()?);
}
if !matches!(context.stdout, IoValue::ParentStdout) {
command.stdout(context.stdout.into_stdio()?);
}
if !matches!(context.stderr, IoValue::ParentStderr) {
command.stderr(context.stderr.into_stdio()?);
}
if let Some(dir) = context.dir {
command.current_dir(dir);
}
command.env_clear();
for (name, val) in context.env {
command.env(name, val);
}
// The innermost hooks are pushed last, and we execute them last.
for hook in context.before_spawn_hooks.iter() {
hook.call(&mut command)?;
}
let shared_child = SharedChild::spawn(&mut command)?;
let command_string = format!("{:?}", argv);
Ok(ChildHandle {
child: shared_child,
command_string,
})
}
#[derive(Debug)]
struct ChildHandle {
child: shared_child::SharedChild,
command_string: String,
}
impl ChildHandle {
fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
let maybe_status = match mode {
WaitMode::Blocking => Some(self.child.wait()?),
WaitMode::Nonblocking => self.child.try_wait()?,
};
if let Some(status) = maybe_status {
Ok(Some(ExpressionStatus {
status,
checked: true,
command: self.command_string.clone(),
}))
} else {
Ok(None)
}
}
fn kill(&self) -> io::Result<()> {
self.child.kill()
}
}
#[derive(Debug)]
struct PipeHandle {
left_handle: HandleInner,
right_handle: HandleInner,
}
impl PipeHandle {
fn start(left: &Expression, right: &Expression, context: IoContext) -> io::Result<PipeHandle> {
let (reader, writer) = os_pipe::pipe()?;
// dup'ing stdin/stdout isn't strictly necessary, but no big deal
let mut left_context = context.try_clone()?;
left_context.stdout = IoValue::Handle(into_file(writer));
let mut right_context = context;
right_context.stdin = IoValue::Handle(into_file(reader));
// Errors starting the left side just short-circuit us.
let left_handle = left.0.start(left_context)?;
// Now the left side is started. If the right side fails to start, we
// can't let the left side turn into a zombie. We have to await it, and
// that means we have to kill it first.
let right_result = right.0.start(right_context);
match right_result {
Ok(right_handle) => Ok(PipeHandle {
left_handle,
right_handle,
}),
Err(e) => {
// Realistically, kill should never return an error. If it
// does, it's probably due to some bug in this library or one
// of its dependencies. If that happens just propagate the
// error and accept that we're probably leaking something.
left_handle.kill()?;
// Similarly, this private API wait should never return an
// error. It might return a non-zero status, but here that's
// still an Ok result.
left_handle.wait(WaitMode::Blocking)?;
Err(e)
}
}
}
fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
// Wait on both sides first, without propagating any errors.
let left_wait_result = self.left_handle.wait(mode);
let right_wait_result = self.right_handle.wait(mode);
// Now we deal with errors from either of those waits. The left wait
// happened first, so that one takes precedence. Note that this is the
// reverse order of exit status precedence.
let left_status = left_wait_result?;
let right_status = right_wait_result?;
// If both waits succeeded, return one of the two statuses.
Ok(pipe_status_precedence(left_status, right_status))
}
// As with wait, we need to call kill on both sides even if the left side
// returns an error.
fn kill(&self) -> io::Result<()> {
let left_kill_result = self.left_handle.kill();
let right_kill_result = self.right_handle.kill();
// As with wait, the left side happened first, so its errors take
// precedence.
left_kill_result.and(right_kill_result)
}
fn pids(&self) -> Vec<u32> {
let mut pids = self.left_handle.pids();
pids.extend_from_slice(&self.right_handle.pids());
pids
}
}
// The rules of precedence are:
// 1) If either side unfinished, the result is unfinished.
// 2) Checked errors trump unchecked errors.
// 3) Any errors trump success.
// 4) All else equal, the right side wins.
fn pipe_status_precedence(
left_maybe_status: Option<ExpressionStatus>,
right_maybe_status: Option<ExpressionStatus>,
) -> Option<ExpressionStatus> {
let (left_status, right_status) = match (left_maybe_status, right_maybe_status) {
(Some(left), Some(right)) => (left, right),
_ => return None,
};
Some(if right_status.is_checked_error() {
right_status
} else if left_status.is_checked_error() {
left_status
} else if !right_status.status.success() {
right_status
} else {
left_status
})
}
fn start_io(
io_inner: &IoExpressionInner,
expr_inner: &Expression,
mut context: IoContext,
) -> io::Result<HandleInner> {
match io_inner {
StdinBytes(v) => {
return Ok(HandleInner::StdinBytes(Box::new(StdinBytesHandle::start(
expr_inner,
context,
Arc::clone(v),
)?)));
}
StdinPath(p) => {
context.stdin = IoValue::Handle(File::open(p)?);
}
StdinFile(f) => {
context.stdin = IoValue::Handle(f.try_clone()?);
}
StdinNull => {
context.stdin = IoValue::Null;
}
StdoutPath(p) => {
context.stdout = IoValue::Handle(File::create(p)?);
}
StdoutFile(f) => {
context.stdout = IoValue::Handle(f.try_clone()?);
}
StdoutNull => {
context.stdout = IoValue::Null;
}
StdoutCapture => {
context.stdout = IoValue::Handle(into_file(context.stdout_capture.write_pipe()?));
}
StdoutToStderr => {
context.stdout = context.stderr.try_clone()?;
}
StderrPath(p) => {
context.stderr = IoValue::Handle(File::create(p)?);
}
StderrFile(f) => {
context.stderr = IoValue::Handle(f.try_clone()?);
}
StderrNull => {
context.stderr = IoValue::Null;
}
StderrCapture => {
context.stderr = IoValue::Handle(into_file(context.stderr_capture.write_pipe()?));
}
StderrToStdout => {
context.stderr = context.stdout.try_clone()?;
}
StdoutStderrSwap => {
mem::swap(&mut context.stdout, &mut context.stderr);
}
Dir(p) => {
context.dir = Some(p.clone());
}
Env(name, val) => {
context.env.insert(name.clone(), val.clone());
}
EnvRemove(name) => {
context.env.remove(name);
}
FullEnv(map) => {
context.env = map.clone();
}
Unchecked => {
let inner_handle = expr_inner.0.start(context)?;
return Ok(HandleInner::Unchecked(Box::new(inner_handle)));
}
BeforeSpawn(hook) => {
context.before_spawn_hooks.push(hook.clone());
}
}
expr_inner.0.start(context)
}
#[derive(Debug)]
struct StdinBytesHandle {
inner_handle: HandleInner,
writer_thread: SharedThread<io::Result<()>>,
}
impl StdinBytesHandle {
fn start(
expression: &Expression,
mut context: IoContext,
input: Arc<Vec<u8>>,
) -> io::Result<StdinBytesHandle> {
let (reader, mut writer) = os_pipe::pipe()?;
context.stdin = IoValue::Handle(into_file(reader));
let inner = expression.0.start(context)?;
// We only spawn the writer thread if the expression started
// successfully, so that start errors won't leak a zombie thread.
let thread = std::thread::spawn(move || writer.write_all(&input));
Ok(StdinBytesHandle {
inner_handle: inner,
writer_thread: SharedThread::new(thread),
})
}
fn wait(&self, mode: WaitMode) -> io::Result<Option<ExpressionStatus>> {
// We're responsible for joining the writer thread and not leaving a zombie.
// But waiting on the inner child can return an error, and in that case we
// don't know whether the child is still running or not. The rule in
// nonblocking mode is "clean up as much as we can, but never block," so we
// can't wait on the writer thread. But the rule in blocking mode is "clean
// up everything, even if some cleanup returns errors," so we must wait
// regardless of what's going on with the child.
let wait_res = self.inner_handle.wait(mode);
if mode.should_join_background_thread(&wait_res) {
// Join the writer thread. Broken pipe errors here are expected if
// the child exited without reading all of its input, so we suppress
// them. Return other errors though.
match self.writer_thread.join() {
Err(err) if err.kind() != io::ErrorKind::BrokenPipe => {
return Err(clone_io_error(err));
}
_ => {}
}
}
wait_res
}
fn kill(&self) -> io::Result<()> {
self.inner_handle.kill()
}
}
#[derive(Debug)]
enum IoExpressionInner {
StdinBytes(Arc<Vec<u8>>),
StdinPath(PathBuf),
StdinFile(File),
StdinNull,
StdoutPath(PathBuf),
StdoutFile(File),
StdoutNull,
StdoutCapture,
StdoutToStderr,
StderrPath(PathBuf),
StderrFile(File),
StderrNull,
StderrCapture,
StderrToStdout,
StdoutStderrSwap,
Dir(PathBuf),
Env(OsString, OsString),
EnvRemove(OsString),
FullEnv(HashMap<OsString, OsString>),
Unchecked,
BeforeSpawn(BeforeSpawnHook),
}
type HookFn = Arc<dyn Fn(&mut Command) -> io::Result<()> + Send + Sync>;
#[derive(Clone)]
struct BeforeSpawnHook {
inner: HookFn,
}
impl BeforeSpawnHook {
fn new<F>(hook: F) -> Self
where
F: Fn(&mut Command) -> io::Result<()> + Send + Sync + 'static,
{
Self {
inner: Arc::new(hook),
}
}
fn call(&self, command: &mut Command) -> io::Result<()> {
(self.inner)(command)
}
}
impl fmt::Debug for BeforeSpawnHook {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
write!(f, "<closure>")
}
}
// An IoContext represents the file descriptors child processes are talking to at execution time.
// It's initialized in run(), with dups of the stdin/stdout/stderr pipes, and then passed down to
// sub-expressions. Compound expressions will clone() it, and redirections will modify it.
#[derive(Debug)]
struct IoContext<'a> {
stdin: IoValue,
stdout: IoValue,
stderr: IoValue,
stdout_capture: &'a OutputCaptureContext,
stderr_capture: &'a OutputCaptureContext,
dir: Option<PathBuf>,
env: HashMap<OsString, OsString>,
before_spawn_hooks: Vec<BeforeSpawnHook>,
}
impl<'a> IoContext<'a> {
// Returns (context, stdout_reader, stderr_reader).
fn new(
stdout_capture: &'a OutputCaptureContext,
stderr_capture: &'a OutputCaptureContext,
) -> Self {
Self {
stdin: IoValue::ParentStdin,
stdout: IoValue::ParentStdout,
stderr: IoValue::ParentStderr,
stdout_capture,
stderr_capture,
dir: None,
env: std::env::vars_os().collect(),
before_spawn_hooks: Vec::new(),
}
}
fn try_clone(&self) -> io::Result<IoContext<'a>> {
Ok(IoContext {
stdin: self.stdin.try_clone()?,
stdout: self.stdout.try_clone()?,
stderr: self.stderr.try_clone()?,
stdout_capture: self.stdout_capture,
stderr_capture: self.stderr_capture,
dir: self.dir.clone(),
env: self.env.clone(),
before_spawn_hooks: self.before_spawn_hooks.clone(),
})
}
}
#[derive(Debug)]
enum IoValue {
ParentStdin,
ParentStdout,
ParentStderr,
Null,
// We store all handles as File, even when they're e.g. anonymous pipes,
// using the into_file() conversion below. The File type is a very thin
// wrapper around the raw handle, but it gives us try_clone() and drop().
Handle(File),
}
impl IoValue {
fn try_clone(&self) -> io::Result<IoValue> {
Ok(match self {
IoValue::ParentStdin => IoValue::ParentStdin,
IoValue::ParentStdout => IoValue::ParentStdout,
IoValue::ParentStderr => IoValue::ParentStderr,
IoValue::Null => IoValue::Null,
IoValue::Handle(f) => IoValue::Handle(f.try_clone()?),
})
}
fn into_stdio(self) -> io::Result<Stdio> {
Ok(match self {
IoValue::ParentStdin => os_pipe::dup_stdin()?.into(),
IoValue::ParentStdout => os_pipe::dup_stdout()?.into(),
IoValue::ParentStderr => os_pipe::dup_stderr()?.into(),
IoValue::Null => Stdio::null(),
IoValue::Handle(f) => f.into(),
})
}
}
// We would rather convert an fd-owning object directly into a
// std::process::Stdio, since all you can do with that is give it to a
// std::process::Command. Unfortunately, Stdio doesn't provide a try_clone
// method, and we need that in order to pass the object to multiple children.
// As a workaround, convert the object to a std::fs::File. All we will use this
// File for is try_clone and Into<Stdio>, which should be sound on any type of
// descriptor. (Some types will lead to an error, like a TcpStream, but that's
// not unsound.) If we discover any unsound cases, we might have to replace
// this with a new trait.
#[cfg(not(windows))]
fn into_file<T: IntoRawFd>(handle: T) -> File {
unsafe { File::from_raw_fd(handle.into_raw_fd()) }
}
#[cfg(windows)]
fn into_file<T: IntoRawHandle>(handle: T) -> File {
unsafe { File::from_raw_handle(handle.into_raw_handle()) }
}
// This struct keeps track of a child exit status, whether or not it's been
// unchecked(), and what the command was that gave it (for error messages).
#[derive(Clone, Debug)]
struct ExpressionStatus {
status: ExitStatus,
checked: bool,
command: String,
}
impl ExpressionStatus {
fn is_checked_error(&self) -> bool {
self.checked && !self.status.success()
}
fn message(&self) -> String {
format!(
"command {} exited with code {}",
self.command,
self.exit_code_string()
)
}
#[cfg(not(windows))]
fn exit_code_string(&self) -> String {
if self.status.code().is_none() {
return format!("<signal {}>", self.status.signal().unwrap());
}
self.status.code().unwrap().to_string()
}
#[cfg(windows)]
fn exit_code_string(&self) -> String {
self.status.code().unwrap().to_string()
}
}
fn canonicalize_exe_path_for_dir(exe_name: &OsStr, context: &IoContext) -> io::Result<OsString> {
// There's a tricky interaction between exe paths and `dir`. Exe paths can
// be relative, and so we have to ask: Is an exe path interpreted relative
// to the parent's cwd, or the child's? The answer is that it's platform
// dependent! >.< (Windows uses the parent's cwd, but because of the
// fork-chdir-exec pattern, Unix usually uses the child's.)
//
// We want to use the parent's cwd consistently, because that saves the
// caller from having to worry about whether `dir` will have side effects,
// and because it's easy for the caller to use Path::join if they want to.
// That means that when `dir` is in use, we need to detect exe names that
// are relative paths, and absolutify them. We want to do that as little as
// possible though, both because canonicalization can fail, and because we
// prefer to let the caller control the child's argv[0].
//
// We never want to absolutify a name like "emacs", because that's probably
// a program in the PATH rather than a local file. So we look for slashes
// in the name to determine what's a filepath and what isn't. Note that
// anything given as a std::path::Path will always have a slash by the time
// we get here, because we specialize the IntoExecutablePath trait to
// prepend a ./ to them when they're relative. This leaves the case where
// Windows users might pass a local file like "foo.bat" as a string, which
// we can't distinguish from a global program name. However, because the
// Windows has the preferred "relative to parent's cwd" behavior already,
// this case actually works without our help. (The thing Windows users have
// to watch out for instead is local files shadowing global program names,
// which I don't think we can or should prevent.)
let has_separator = exe_name
.to_string_lossy()
.chars()
.any(std::path::is_separator);
let is_relative = Path::new(exe_name).is_relative();
if context.dir.is_some() && has_separator && is_relative {
Path::new(exe_name).canonicalize().map(Into::into)
} else {
Ok(exe_name.to_owned())
}
}
// We want to allow Path("foo") to refer to the local file "./foo" on
// Unix, and we want to *prevent* Path("echo") from referring to the
// global "echo" command on either Unix or Windows. Prepend a dot to all
// relative paths to accomplish both of those.
fn dotify_relative_exe_path(path: &Path) -> PathBuf {
// This is a no-op if path is absolute or begins with a Windows prefix.
Path::new(".").join(path)
}
/// An implementation detail of [`cmd`](fn.cmd.html), to distinguish paths from
/// other string types.
///
/// `Path("foo.sh")` means the file named `foo.sh` in the current directory.
/// However if you try to execute that path with
/// [`std::process::Command`](https://doc.rust-lang.org/std/process/struct.Command.html),
/// Unix will get upset that it doesn't have a leading `./`. Rust knows that the
/// string is a path, but that distinction gets lost by the time execution
/// happens.
///
/// To execute relative paths correctly, duct prepends the `./` to them
/// automatically. This trait captures the distinction between the path types
/// and other types of strings, which don't get modified. See the trait bounds
/// on [`cmd`](fn.cmd.html).
pub trait IntoExecutablePath {
fn to_executable(self) -> OsString;
}
// TODO: Get rid of most of these impls once specialization lands.
impl<'a> IntoExecutablePath for &'a Path {
fn to_executable(self) -> OsString {
dotify_relative_exe_path(self).into()
}
}
impl IntoExecutablePath for PathBuf {
fn to_executable(self) -> OsString {
dotify_relative_exe_path(&self).into()
}
}
impl<'a> IntoExecutablePath for &'a PathBuf {
fn to_executable(self) -> OsString {
dotify_relative_exe_path(self).into()
}
}
impl<'a> IntoExecutablePath for &'a str {
fn to_executable(self) -> OsString {
self.into()
}
}
impl IntoExecutablePath for String {
fn to_executable(self) -> OsString {
self.into()
}
}
impl<'a> IntoExecutablePath for &'a String {
fn to_executable(self) -> OsString {
self.into()
}
}
impl<'a> IntoExecutablePath for &'a OsStr {
fn to_executable(self) -> OsString {
self.into()
}
}
impl IntoExecutablePath for OsString {
fn to_executable(self) -> OsString {
self
}
}
impl<'a> IntoExecutablePath for &'a OsString {
fn to_executable(self) -> OsString {
self.into()
}
}
// io::Error doesn't implement clone directly, so we kind of hack it together.
fn clone_io_error(error: &io::Error) -> io::Error {
if let Some(code) = error.raw_os_error() {
io::Error::from_raw_os_error(code)
} else {
io::Error::new(error.kind(), error.to_string())
}
}
#[derive(Debug)]
struct SharedThread<T> {
result: OnceCell<T>,
handle: Mutex<Option<JoinHandle<T>>>,
}
// A thread that sticks its result in a lazy cell, so that multiple callers can see it.
impl<T> SharedThread<T> {
fn new(handle: JoinHandle<T>) -> Self {
SharedThread {
result: OnceCell::new(),
handle: Mutex::new(Some(handle)),
}
}
// If the other thread panicked, this will panic.
fn join(&self) -> &T {
let mut handle_lock = self.handle.lock().expect("shared thread handle poisoned");
if let Some(handle) = handle_lock.take() {
let ret = handle.join().expect("panic on shared thread");
self.result
.set(ret)
.map_err(|_| "result cell unexpectedly full")
.unwrap();
}
self.result.get().expect("result cell unexpectedly empty")
}
}
#[derive(Clone, Copy, Debug)]
enum WaitMode {
Blocking,
Nonblocking,
}
impl WaitMode {
fn should_join_background_thread(
&self,
expression_result: &io::Result<Option<ExpressionStatus>>,
) -> bool {
// Nonblocking waits can only join associated background threads if the
// running expression is finished (that is, when the thread is
// guaranteed to finish soon). Blocking waits should always join, even
// in the presence of errors.
matches!(self, WaitMode::Blocking) || matches!(expression_result, Ok(Some(_)))
}
}
#[cfg(windows)]
fn canonicalize_env_var_name(name: OsString) -> OsString {
// On Windows, because env vars are case-insensitive, we uppercase all env
// var names. That makes assignments and deletions in our internal map work
// the same way they would on the real environment.
match name.into_string() {
Ok(name) => name.to_uppercase().into(),
// If the name isn't valid Unicode then just leave it as is.
Err(name) => name,
}
}
#[cfg(not(windows))]
fn canonicalize_env_var_name(name: OsString) -> OsString {
// No-op on all other platforms.
name
}
type ReaderThread = JoinHandle<io::Result<Vec<u8>>>;
#[derive(Debug)]
struct OutputCaptureContext {
pair: OnceCell<(os_pipe::PipeReader, os_pipe::PipeWriter)>,
}
impl OutputCaptureContext {
fn new() -> Self {
Self {
pair: OnceCell::new(),
}
}
fn write_pipe(&self) -> io::Result<os_pipe::PipeWriter> {
let (_, writer) = self.pair.get_or_try_init(os_pipe::pipe)?;
writer.try_clone()
}
// Only spawn a read thread if the write pipe was used.
fn maybe_read_thread(self) -> Option<ReaderThread> {
if let Some((mut reader, _)) = self.pair.into_inner() {
Some(std::thread::spawn(move || {
let mut output = Vec::new();
reader.read_to_end(&mut output)?;
Ok(output)
}))
} else {
None
}
}
}
/// An incremental reader created with the
/// [`Expression::reader`](struct.Expression.html#method.reader) method.
///
/// When this reader reaches EOF, it automatically calls
/// [`wait`](struct.Handle.html#method.wait) on the inner handle. If the child
/// returns a non-zero exit status, the read at EOF will return an error,
/// unless you use [`unchecked`](struct.Expression.html#method.unchecked).
///
/// If the reader is dropped before reaching EOF, it calls
/// [`kill`](struct.ReaderHandle.html#method.kill) in its destructor.
///
/// Both `ReaderHandle` and `&ReaderHandle` implement
/// [`std::io::Read`](https://doc.rust-lang.org/std/io/trait.Read.html). That
/// makes it possible for one thread to
/// [`kill`](struct.ReaderHandle.html#method.kill) the `ReaderHandle` while
/// another thread is reading it. That can be useful for effectively canceling
/// the read and unblocking the reader thread. However, note that killed child
/// processes return a non-zero exit status, which is an error for the reader
/// by default, unless you use
/// [`unchecked`](struct.Expression.html#method.unchecked).
///
/// # Example
///
/// ```
/// # fn main() -> Result<(), Box<dyn std::error::Error>> {
/// # if cfg!(not(windows)) {
/// use duct::cmd;
/// use duct::ReaderHandle;
/// use std::sync::Arc;
/// use std::io::prelude::*;
///
/// // This child process prints a single byte and then sleeps.
/// //
/// // CAUTION: Using Bash for this example would probably hang, because Bash
/// // would spawn a `sleep` grandchild processes, and that grandchild wouldn't
/// // receive the kill signal.
/// let python_child = "\
/// import sys
/// import time
/// print()
/// sys.stdout.flush()
/// time.sleep(24 * 60 * 60)
/// ";
/// let reader: ReaderHandle = cmd!("python3", "-c", python_child)
/// .unchecked()
/// .reader()?;
///
/// // Spawn two threads that both try to read the single byte. Whichever one
/// // succeeds then calls kill() to unblock the other.
/// let arc_reader: Arc<ReaderHandle> = Arc::new(reader);
/// let mut threads = Vec::new();
/// for _ in 0..2 {
/// let arc_reader = arc_reader.clone();
/// threads.push(std::thread::spawn(move || -> std::io::Result<()> {
/// let mut single_byte = [0u8];
/// (&*arc_reader).read(&mut single_byte)?;
/// arc_reader.kill()?;
/// Ok(())
/// }));
/// }
///
/// // Join both threads. Because of the kill() above, both threads will exit
/// // quickly.
/// for thread in threads {
/// thread.join().unwrap()?;
/// }
/// # }
/// # Ok(())
/// # }
/// ```
#[derive(Debug)]
pub struct ReaderHandle {
handle: Handle,
reader: os_pipe::PipeReader,
}
impl ReaderHandle {
/// Check whether the underlying expression is finished. This is equivalent
/// to [`Handle::try_wait`](struct.Handle.html#method.try_wait). If the
/// `ReaderHandle` has indicated EOF successfully, then it's guaranteed
/// that this method will return `Ok(Some(_))`.
///
/// Note that the
/// [`stdout`](https://doc.rust-lang.org/std/process/struct.Output.html#structfield.stdout)
/// field of the returned
/// [`Output`](https://doc.rust-lang.org/std/process/struct.Output.html)
/// will always be empty, because the `ReaderHandle` itself owns the
/// child's stdout pipe.
pub fn try_wait(&self) -> io::Result<Option<&Output>> {
self.handle.try_wait()
}
/// Kill the underlying expression and await all the child processes.
///
/// Any errors that would normally result from a non-zero exit status are
/// ignored during this wait, as with
/// [`Handle::kill`](struct.Handle.html#method.kill).
///
/// Note that as with
/// [`std::process::Child::kill`](https://doc.rust-lang.org/beta/std/process/struct.Child.html#method.kill),
/// this does not kill any grandchild processes that the children have
/// spawned on their own. It only kills the child processes that Duct
/// spawned itself. This is **especially relevant** for `ReaderHandle`,
/// because if you're using `kill` to unblock another thread that's
/// reading, an unkilled grandchild process might keep the child's stdout
/// pipe open and keep your reader thread blocked. For that use case, you
/// need to ensure that any grandchild processes your child might spawn are
/// going to be short-lived. See
/// [`gotchas.md`](https://github.com/oconnor663/duct.py/blob/master/gotchas.md)
/// for an extensive discussion of these issues.
pub fn kill(&self) -> io::Result<()> {
self.handle.kill()
}
/// Return a `Vec<u32>` containing the PIDs of all of the child processes.
/// The PIDs are given in pipeline order, from left to right.
pub fn pids(&self) -> Vec<u32> {
self.handle.pids()
}
}
impl<'a> Read for &'a ReaderHandle {
/// Note that if you don't use
/// [`unchecked`](struct.Expression.html#method.unchecked), and the child
/// returns a non-zero exit status, the final call to `read` will return an
/// error, just as [`run`](struct.Expression.html#method.run) would.
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
let n = (&self.reader).read(buf)?;
if n == 0 && !buf.is_empty() {
// EOF detected. Wait on the child to clean it up before returning.
self.handle.wait()?;
}
Ok(n)
}
}
impl Read for ReaderHandle {
/// Note that if you don't use
/// [`unchecked`](struct.Expression.html#method.unchecked), and the child
/// returns a non-zero exit status, the final call to `read` will return an
/// error, just as [`run`](struct.Expression.html#method.run) would.
fn read(&mut self, buf: &mut [u8]) -> io::Result<usize> {
(&*self).read(buf)
}
}
impl Drop for ReaderHandle {
fn drop(&mut self) {
// Just call kill() unconditionally. If wait() has already happened,
// this has no effect.
let _ = self.handle.kill();
}
}
#[cfg(test)]
mod test;