guppy/petgraph_support/
topo.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
// Copyright (c) The cargo-guppy Contributors
// SPDX-License-Identifier: MIT OR Apache-2.0

use petgraph::{
    graph::IndexType,
    prelude::*,
    visit::{
        GraphRef, IntoNeighborsDirected, IntoNodeIdentifiers, NodeCompactIndexable, VisitMap,
        Visitable, Walker,
    },
};
use std::marker::PhantomData;

/// A cycle-aware topological sort of a graph.
#[derive(Clone, Debug)]
pub struct TopoWithCycles<Ix> {
    // This is a map of each node index to its corresponding topo index.
    reverse_index: Box<[usize]>,
    // Prevent mixing up index types.
    _phantom: PhantomData<Ix>,
}

impl<Ix: IndexType> TopoWithCycles<Ix> {
    pub fn new<G>(graph: G) -> Self
    where
        G: GraphRef
            + Visitable<NodeId = NodeIndex<Ix>>
            + IntoNodeIdentifiers
            + IntoNeighborsDirected<NodeId = NodeIndex<Ix>>
            + NodeCompactIndexable,
        G::Map: VisitMap<NodeIndex<Ix>>,
    {
        // petgraph's default topo algorithms don't handle cycles. Use DfsPostOrder which does.
        let mut dfs = DfsPostOrder::empty(graph);

        let roots = graph
            .node_identifiers()
            .filter(move |&a| graph.neighbors_directed(a, Incoming).next().is_none());
        dfs.stack.extend(roots);

        let mut topo: Vec<NodeIndex<Ix>> = (&mut dfs).iter(graph).collect();
        // dfs returns its data in postorder (reverse topo order), so reverse that for forward topo
        // order.
        topo.reverse();

        // Because the graph is NodeCompactIndexable, the indexes are in the range
        // (0..graph.node_count()).
        // Use this property to build a reverse map.
        let mut reverse_index = vec![0; graph.node_count()];
        topo.iter().enumerate().for_each(|(topo_ix, node_ix)| {
            reverse_index[node_ix.index()] = topo_ix;
        });

        // topo.len cannot possibly exceed graph.node_count().
        assert!(
            topo.len() <= graph.node_count(),
            "topo.len() <= graph.node_count() ({} is actually > {})",
            topo.len(),
            graph.node_count(),
        );
        if topo.len() < graph.node_count() {
            // This means there was a cycle in the graph which caused some nodes to be skipped (e.g.
            // consider a node with a self-loop -- it will be filtered out by the
            // graph.neighbors_directed call above, and might not end up being part of the topo
            // order).
            //
            // In this case, do a best-effort job: fill in the missing nodes with their reverse
            // index set to the end of the topo order. We could do something fancier here with sccs,
            // but for guppy this should never happen in practice. (In fact, the one time this code
            // was hit there was actually an underlying bug.)
            let mut next = topo.len();
            for n in 0..graph.node_count() {
                let a = NodeIndex::new(n);
                if !dfs.finished.is_visited(&a) {
                    // a is a missing index.
                    reverse_index[a.index()] = next;
                    next += 1;
                }
            }
        }

        Self {
            reverse_index: reverse_index.into_boxed_slice(),
            _phantom: PhantomData,
        }
    }

    /// Sort nodes based on the topo order in self.
    #[inline]
    pub fn sort_nodes(&self, nodes: &mut [NodeIndex<Ix>]) {
        nodes.sort_unstable_by_key(|node_ix| self.topo_ix(*node_ix))
    }

    #[inline]
    pub fn topo_ix(&self, node_ix: NodeIndex<Ix>) -> usize {
        self.reverse_index[node_ix.index()]
    }
}

#[cfg(all(test, feature = "proptest1"))]
mod proptests {
    use super::*;
    use proptest::prelude::*;

    proptest! {
        #[test]
        fn graph_topo_sort(graph in possibly_cyclic_graph()) {
            let topo = TopoWithCycles::new(&graph);
            let mut nodes: Vec<_> = graph.node_indices().collect();

            check_consistency(&topo, graph.node_count());

            topo.sort_nodes(&mut nodes);
            for (topo_ix, node_ix) in nodes.iter().enumerate() {
                assert_eq!(topo.topo_ix(*node_ix), topo_ix);
            }

        }
    }

    fn possibly_cyclic_graph() -> impl Strategy<Value = Graph<(), ()>> {
        // Generate a graph in adjacency list form. N nodes, up to N**2 edges.
        (1..=100usize)
            .prop_flat_map(|n| {
                (
                    Just(n),
                    prop::collection::vec(prop::collection::vec(0..n, 0..n), n),
                )
            })
            .prop_map(|(n, adj)| {
                let mut graph =
                    Graph::<(), ()>::with_capacity(n, adj.iter().map(|x| x.len()).sum());
                for _ in 0..n {
                    // Add all the nodes under consideration.
                    graph.add_node(());
                }
                for (src, dsts) in adj.into_iter().enumerate() {
                    let src = NodeIndex::new(src);
                    for dst in dsts {
                        let dst = NodeIndex::new(dst);
                        graph.update_edge(src, dst, ());
                    }
                }
                graph
            })
    }

    fn check_consistency(topo: &TopoWithCycles<u32>, n: usize) {
        // Ensure that all indexes are covered and unique.
        let mut seen = vec![false; n];
        for i in 0..n {
            let topo_ix = topo.topo_ix(NodeIndex::new(i));
            assert!(
                !seen[topo_ix],
                "topo_ix {} should be seen exactly once, but seen twice",
                topo_ix
            );
            seen[topo_ix] = true;
        }
        for (i, &this_seen) in seen.iter().enumerate() {
            assert!(this_seen, "topo_ix {} should be seen, but wasn't", i);
        }
    }
}