nextest_filtering/expression.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534
// Copyright (c) The nextest Contributors
// SPDX-License-Identifier: MIT OR Apache-2.0
use crate::{
errors::{FiltersetParseErrors, ParseSingleError},
parsing::{
new_span, parse, DisplayParsedRegex, DisplayParsedString, ExprResult, GenericGlob,
ParsedExpr, SetDef,
},
};
use guppy::{
graph::{cargo::BuildPlatform, PackageGraph},
PackageId,
};
use miette::SourceSpan;
use nextest_metadata::{RustBinaryId, RustTestBinaryKind};
use recursion::{Collapsible, CollapsibleExt, MappableFrame, PartiallyApplied};
use std::{collections::HashSet, fmt};
/// Matcher for name
///
/// Used both for package name and test name
#[derive(Debug, Clone)]
pub enum NameMatcher {
/// Exact value
Equal { value: String, implicit: bool },
/// Simple contains test
Contains { value: String, implicit: bool },
/// Test against a glob
Glob { glob: GenericGlob, implicit: bool },
/// Test against a regex
Regex(regex::Regex),
}
impl NameMatcher {
pub(crate) fn implicit_equal(value: String) -> Self {
Self::Equal {
value,
implicit: true,
}
}
pub(crate) fn implicit_contains(value: String) -> Self {
Self::Contains {
value,
implicit: true,
}
}
}
impl PartialEq for NameMatcher {
fn eq(&self, other: &Self) -> bool {
match (self, other) {
(
Self::Contains {
value: s1,
implicit: default1,
},
Self::Contains {
value: s2,
implicit: default2,
},
) => s1 == s2 && default1 == default2,
(
Self::Equal {
value: s1,
implicit: default1,
},
Self::Equal {
value: s2,
implicit: default2,
},
) => s1 == s2 && default1 == default2,
(Self::Regex(r1), Self::Regex(r2)) => r1.as_str() == r2.as_str(),
(Self::Glob { glob: g1, .. }, Self::Glob { glob: g2, .. }) => {
g1.regex().as_str() == g2.regex().as_str()
}
_ => false,
}
}
}
impl Eq for NameMatcher {}
impl fmt::Display for NameMatcher {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Equal { value, implicit } => write!(
f,
"{}{}",
if *implicit { "" } else { "=" },
DisplayParsedString(value)
),
Self::Contains { value, implicit } => write!(
f,
"{}{}",
if *implicit { "" } else { "~" },
DisplayParsedString(value)
),
Self::Glob { glob, implicit } => write!(
f,
"{}{}",
if *implicit { "" } else { "#" },
DisplayParsedString(glob.as_str())
),
Self::Regex(r) => write!(f, "/{}/", DisplayParsedRegex(r)),
}
}
}
/// A leaf node in a filterset expression tree.
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum FiltersetLeaf {
/// All tests in packages
Packages(HashSet<PackageId>),
/// All tests present in this kind of binary.
Kind(NameMatcher, SourceSpan),
/// The platform a test is built for.
Platform(BuildPlatform, SourceSpan),
/// All binaries matching a name
Binary(NameMatcher, SourceSpan),
/// All binary IDs matching a name
BinaryId(NameMatcher, SourceSpan),
/// All tests matching a name
Test(NameMatcher, SourceSpan),
/// The default set of tests to run.
Default,
/// All tests
All,
/// No tests
None,
}
/// A query for a binary, passed into [`Filterset::matches_binary`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct BinaryQuery<'a> {
/// The package ID.
pub package_id: &'a PackageId,
/// The binary ID.
pub binary_id: &'a RustBinaryId,
/// The name of the binary.
pub binary_name: &'a str,
/// The kind of binary this test is (lib, test etc).
pub kind: &'a RustTestBinaryKind,
/// The platform this test is built for.
pub platform: BuildPlatform,
}
/// A query for a specific test, passed into [`Filterset::matches_test`].
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct TestQuery<'a> {
/// The binary query.
pub binary_query: BinaryQuery<'a>,
/// The name of the test.
pub test_name: &'a str,
}
/// A filterset that has been parsed and compiled.
///
/// Used to filter tests to run.
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct Filterset {
/// The raw expression passed in.
pub input: String,
/// The parsed-but-not-compiled expression.
pub parsed: ParsedExpr,
/// The compiled expression.
pub compiled: CompiledExpr,
}
#[derive(Debug, Clone, PartialEq, Eq)]
pub enum CompiledExpr {
/// Accepts every test not in the given expression
Not(Box<CompiledExpr>),
/// Accepts every test in either given expression
Union(Box<CompiledExpr>, Box<CompiledExpr>),
/// Accepts every test in both given expressions
Intersection(Box<CompiledExpr>, Box<CompiledExpr>),
/// Accepts every test in a set
Set(FiltersetLeaf),
}
impl CompiledExpr {
/// Returns a value indicating all tests are accepted by this filterset.
pub const ALL: Self = CompiledExpr::Set(FiltersetLeaf::All);
/// Returns a value indicating if the given binary is accepted by this filterset.
///
/// The value is:
/// * `Some(true)` if this binary is definitely accepted by this filterset.
/// * `Some(false)` if this binary is definitely not accepted.
/// * `None` if this binary might or might not be accepted.
pub fn matches_binary(&self, query: &BinaryQuery<'_>, cx: &EvalContext<'_>) -> Option<bool> {
use ExprFrame::*;
Wrapped(self).collapse_frames(|layer: ExprFrame<&FiltersetLeaf, Option<bool>>| {
match layer {
Set(set) => set.matches_binary(query, cx),
Not(a) => a.logic_not(),
// TODO: or_else/and_then?
Union(a, b) => a.logic_or(b),
Intersection(a, b) => a.logic_and(b),
Difference(a, b) => a.logic_and(b.logic_not()),
Parens(a) => a,
}
})
}
/// Returns true if the given test is accepted by this filterset.
pub fn matches_test(&self, query: &TestQuery<'_>, cx: &EvalContext<'_>) -> bool {
use ExprFrame::*;
Wrapped(self).collapse_frames(|layer: ExprFrame<&FiltersetLeaf, bool>| match layer {
Set(set) => set.matches_test(query, cx),
Not(a) => !a,
Union(a, b) => a || b,
Intersection(a, b) => a && b,
Difference(a, b) => a && !b,
Parens(a) => a,
})
}
}
impl NameMatcher {
pub(crate) fn is_match(&self, input: &str) -> bool {
match self {
Self::Equal { value, .. } => value == input,
Self::Contains { value, .. } => input.contains(value),
Self::Glob { glob, .. } => glob.is_match(input),
Self::Regex(reg) => reg.is_match(input),
}
}
}
impl FiltersetLeaf {
fn matches_test(&self, query: &TestQuery<'_>, cx: &EvalContext) -> bool {
match self {
Self::All => true,
Self::None => false,
Self::Default => cx.default_filter.matches_test(query, cx),
Self::Test(matcher, _) => matcher.is_match(query.test_name),
Self::Binary(matcher, _) => matcher.is_match(query.binary_query.binary_name),
Self::BinaryId(matcher, _) => matcher.is_match(query.binary_query.binary_id.as_str()),
Self::Platform(platform, _) => query.binary_query.platform == *platform,
Self::Kind(matcher, _) => matcher.is_match(query.binary_query.kind.as_str()),
Self::Packages(packages) => packages.contains(query.binary_query.package_id),
}
}
fn matches_binary(&self, query: &BinaryQuery<'_>, cx: &EvalContext) -> Option<bool> {
match self {
Self::All => Logic::top(),
Self::None => Logic::bottom(),
Self::Default => cx.default_filter.matches_binary(query, cx),
Self::Test(_, _) => None,
Self::Binary(matcher, _) => Some(matcher.is_match(query.binary_name)),
Self::BinaryId(matcher, _) => Some(matcher.is_match(query.binary_id.as_str())),
Self::Platform(platform, _) => Some(query.platform == *platform),
Self::Kind(matcher, _) => Some(matcher.is_match(query.kind.as_str())),
Self::Packages(packages) => Some(packages.contains(query.package_id)),
}
}
}
/// Inputs to filterset parsing.
#[derive(Copy, Clone, Debug)]
pub struct ParseContext<'a> {
/// The package graph.
pub graph: &'a PackageGraph,
/// What kind of expression this is.
///
/// In some cases, expressions must restrict themselves to a subset of the full filtering
/// language. This is used to determine what subset of the language is allowed.
pub kind: FiltersetKind,
}
/// The kind of filterset being parsed.
#[derive(Copy, Clone, Debug, PartialEq, Eq)]
pub enum FiltersetKind {
/// A test filterset.
Test,
/// A default-filter filterset.
///
/// To prevent recursion, default-filter expressions cannot contain `default()` themselves.
/// (This is a limited kind of the infinite recursion checking we'll need to do in the future.)
DefaultFilter,
}
impl fmt::Display for FiltersetKind {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
match self {
Self::Test => write!(f, "test"),
Self::DefaultFilter => write!(f, "default-filter"),
}
}
}
/// Inputs to filterset evaluation functions.
#[derive(Copy, Clone, Debug)]
pub struct EvalContext<'a> {
/// The default set of tests to run.
pub default_filter: &'a CompiledExpr,
}
impl Filterset {
/// Parse a filterset.
pub fn parse(input: String, cx: &ParseContext<'_>) -> Result<Self, FiltersetParseErrors> {
let mut errors = Vec::new();
match parse(new_span(&input, &mut errors)) {
Ok(parsed_expr) => {
if !errors.is_empty() {
return Err(FiltersetParseErrors::new(input.clone(), errors));
}
match parsed_expr {
ExprResult::Valid(parsed) => {
let compiled = crate::compile::compile(&parsed, cx)
.map_err(|errors| FiltersetParseErrors::new(input.clone(), errors))?;
Ok(Self {
input,
parsed,
compiled,
})
}
_ => {
// should not happen
// If an ParsedExpr::Error is produced, we should also have an error inside
// errors and we should already have returned
// IMPROVE this is an internal error => add log to suggest opening an bug ?
Err(FiltersetParseErrors::new(
input,
vec![ParseSingleError::Unknown],
))
}
}
}
Err(_) => {
// should not happen
// According to our parsing strategy we should never produce an Err(_)
// IMPROVE this is an internal error => add log to suggest opening an bug ?
Err(FiltersetParseErrors::new(
input,
vec![ParseSingleError::Unknown],
))
}
}
}
/// Returns a value indicating if the given binary is accepted by this filterset.
///
/// The value is:
/// * `Some(true)` if this binary is definitely accepted by this filterset.
/// * `Some(false)` if this binary is definitely not accepted.
/// * `None` if this binary might or might not be accepted.
pub fn matches_binary(&self, query: &BinaryQuery<'_>, cx: &EvalContext<'_>) -> Option<bool> {
self.compiled.matches_binary(query, cx)
}
/// Returns true if the given test is accepted by this filterset.
pub fn matches_test(&self, query: &TestQuery<'_>, cx: &EvalContext<'_>) -> bool {
self.compiled.matches_test(query, cx)
}
/// Returns true if the given expression needs dependencies information to work
pub fn needs_deps(raw_expr: &str) -> bool {
// the expression needs dependencies expression if it uses deps(..) or rdeps(..)
raw_expr.contains("deps")
}
}
/// A propositional logic used to evaluate `Expression` instances.
///
/// An `Expression` consists of some predicates and the `any`, `all` and `not` operators. An
/// implementation of `Logic` defines how the `any`, `all` and `not` operators should be evaluated.
trait Logic {
/// The result of an `all` operation with no operands, akin to Boolean `true`.
fn top() -> Self;
/// The result of an `any` operation with no operands, akin to Boolean `false`.
fn bottom() -> Self;
/// `AND`, which corresponds to the `all` operator.
fn logic_and(self, other: Self) -> Self;
/// `OR`, which corresponds to the `any` operator.
fn logic_or(self, other: Self) -> Self;
/// `NOT`, which corresponds to the `not` operator.
fn logic_not(self) -> Self;
}
/// A boolean logic.
impl Logic for bool {
#[inline]
fn top() -> Self {
true
}
#[inline]
fn bottom() -> Self {
false
}
#[inline]
fn logic_and(self, other: Self) -> Self {
self && other
}
#[inline]
fn logic_or(self, other: Self) -> Self {
self || other
}
#[inline]
fn logic_not(self) -> Self {
!self
}
}
/// A three-valued logic -- `None` stands for the value being unknown.
///
/// The truth tables for this logic are described on
/// [Wikipedia](https://en.wikipedia.org/wiki/Three-valued_logic#Kleene_and_Priest_logics).
impl Logic for Option<bool> {
#[inline]
fn top() -> Self {
Some(true)
}
#[inline]
fn bottom() -> Self {
Some(false)
}
#[inline]
fn logic_and(self, other: Self) -> Self {
match (self, other) {
// If either is false, the expression is false.
(Some(false), _) | (_, Some(false)) => Some(false),
// If both are true, the expression is true.
(Some(true), Some(true)) => Some(true),
// One or both are unknown -- the result is unknown.
_ => None,
}
}
#[inline]
fn logic_or(self, other: Self) -> Self {
match (self, other) {
// If either is true, the expression is true.
(Some(true), _) | (_, Some(true)) => Some(true),
// If both are false, the expression is false.
(Some(false), Some(false)) => Some(false),
// One or both are unknown -- the result is unknown.
_ => None,
}
}
#[inline]
fn logic_not(self) -> Self {
self.map(|v| !v)
}
}
pub(crate) enum ExprFrame<Set, A> {
Not(A),
Union(A, A),
Intersection(A, A),
Difference(A, A),
Parens(A),
Set(Set),
}
impl<Set> MappableFrame for ExprFrame<Set, PartiallyApplied> {
type Frame<Next> = ExprFrame<Set, Next>;
fn map_frame<A, B>(input: Self::Frame<A>, mut f: impl FnMut(A) -> B) -> Self::Frame<B> {
use ExprFrame::*;
match input {
Not(a) => Not(f(a)),
Union(a, b) => Union(f(a), f(b)),
Intersection(a, b) => Intersection(f(a), f(b)),
Difference(a, b) => Difference(f(a), f(b)),
Parens(a) => Parens(f(a)),
Set(f) => Set(f),
}
}
}
// Wrapped struct to prevent trait impl leakages.
pub(crate) struct Wrapped<T>(pub(crate) T);
impl<'a> Collapsible for Wrapped<&'a CompiledExpr> {
type FrameToken = ExprFrame<&'a FiltersetLeaf, PartiallyApplied>;
fn into_frame(self) -> <Self::FrameToken as MappableFrame>::Frame<Self> {
match self.0 {
CompiledExpr::Not(a) => ExprFrame::Not(Wrapped(a.as_ref())),
CompiledExpr::Union(a, b) => ExprFrame::Union(Wrapped(a.as_ref()), Wrapped(b.as_ref())),
CompiledExpr::Intersection(a, b) => {
ExprFrame::Intersection(Wrapped(a.as_ref()), Wrapped(b.as_ref()))
}
CompiledExpr::Set(f) => ExprFrame::Set(f),
}
}
}
impl<'a> Collapsible for Wrapped<&'a ParsedExpr> {
type FrameToken = ExprFrame<&'a SetDef, PartiallyApplied>;
fn into_frame(self) -> <Self::FrameToken as MappableFrame>::Frame<Self> {
match self.0 {
ParsedExpr::Not(_, a) => ExprFrame::Not(Wrapped(a.as_ref())),
ParsedExpr::Union(_, a, b) => {
ExprFrame::Union(Wrapped(a.as_ref()), Wrapped(b.as_ref()))
}
ParsedExpr::Intersection(_, a, b) => {
ExprFrame::Intersection(Wrapped(a.as_ref()), Wrapped(b.as_ref()))
}
ParsedExpr::Difference(_, a, b) => {
ExprFrame::Difference(Wrapped(a.as_ref()), Wrapped(b.as_ref()))
}
ParsedExpr::Parens(a) => ExprFrame::Parens(Wrapped(a.as_ref())),
ParsedExpr::Set(f) => ExprFrame::Set(f),
}
}
}