nextest_runner/runner/imp.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483
// Copyright (c) The nextest Contributors
// SPDX-License-Identifier: MIT OR Apache-2.0
use super::{DispatcherContext, ExecutorContext, RunnerTaskState};
use crate::{
config::{
EvaluatableProfile, MaxFail, RetryPolicy, SetupScriptExecuteData, TestGroup, TestThreads,
},
double_spawn::DoubleSpawnInfo,
errors::{ConfigureHandleInheritanceError, TestRunnerBuildError, TestRunnerExecuteErrors},
input::{InputHandler, InputHandlerKind, InputHandlerStatus},
list::{TestInstance, TestList},
reporter::events::{RunStats, TestEvent},
runner::ExecutorEvent,
signal::{SignalHandler, SignalHandlerKind},
target_runner::TargetRunner,
test_output::CaptureStrategy,
};
use async_scoped::TokioScope;
use future_queue::StreamExt;
use futures::prelude::*;
use quick_junit::ReportUuid;
use std::{convert::Infallible, fmt, sync::Arc};
use tokio::{
runtime::Runtime,
sync::{mpsc::unbounded_channel, oneshot},
task::JoinError,
};
use tracing::{debug, warn};
/// Test runner options.
#[derive(Debug, Default)]
pub struct TestRunnerBuilder {
capture_strategy: CaptureStrategy,
retries: Option<RetryPolicy>,
max_fail: Option<MaxFail>,
test_threads: Option<TestThreads>,
}
impl TestRunnerBuilder {
/// Sets the capture strategy for the test runner
///
/// * [`CaptureStrategy::Split`]
/// * pro: output from `stdout` and `stderr` can be identified and easily split
/// * con: ordering between the streams cannot be guaranteed
/// * [`CaptureStrategy::Combined`]
/// * pro: output is guaranteed to be ordered as it would in a terminal emulator
/// * con: distinction between `stdout` and `stderr` is lost
/// * [`CaptureStrategy::None`] -
/// * In this mode, tests will always be run serially: `test_threads` will always be 1.
pub fn set_capture_strategy(&mut self, strategy: CaptureStrategy) -> &mut Self {
self.capture_strategy = strategy;
self
}
/// Sets the number of retries for this test runner.
pub fn set_retries(&mut self, retries: RetryPolicy) -> &mut Self {
self.retries = Some(retries);
self
}
/// Sets the max-fail value for this test runner.
pub fn set_max_fail(&mut self, max_fail: MaxFail) -> &mut Self {
self.max_fail = Some(max_fail);
self
}
/// Sets the number of tests to run simultaneously.
pub fn set_test_threads(&mut self, test_threads: TestThreads) -> &mut Self {
self.test_threads = Some(test_threads);
self
}
/// Creates a new test runner.
#[expect(clippy::too_many_arguments)]
pub fn build<'a>(
self,
test_list: &'a TestList,
profile: &'a EvaluatableProfile<'a>,
cli_args: Vec<String>,
signal_handler: SignalHandlerKind,
input_handler: InputHandlerKind,
double_spawn: DoubleSpawnInfo,
target_runner: TargetRunner,
) -> Result<TestRunner<'a>, TestRunnerBuildError> {
let test_threads = match self.capture_strategy {
CaptureStrategy::None => 1,
CaptureStrategy::Combined | CaptureStrategy::Split => self
.test_threads
.unwrap_or_else(|| profile.test_threads())
.compute(),
};
let max_fail = self
.max_fail
.unwrap_or_else(|| MaxFail::from_fail_fast(profile.fail_fast()));
let runtime = tokio::runtime::Builder::new_multi_thread()
.enable_all()
.thread_name("nextest-runner-worker")
.build()
.map_err(TestRunnerBuildError::TokioRuntimeCreate)?;
let _guard = runtime.enter();
// signal_handler.build() must be called from within the guard.
let signal_handler = signal_handler.build()?;
let input_handler = input_handler.build();
Ok(TestRunner {
inner: TestRunnerInner {
run_id: ReportUuid::new_v4(),
profile,
test_list,
test_threads,
double_spawn,
target_runner,
capture_strategy: self.capture_strategy,
force_retries: self.retries,
cli_args,
max_fail,
runtime,
},
signal_handler,
input_handler,
})
}
}
/// Context for running tests.
///
/// Created using [`TestRunnerBuilder::build`].
#[derive(Debug)]
pub struct TestRunner<'a> {
inner: TestRunnerInner<'a>,
signal_handler: SignalHandler,
input_handler: InputHandler,
}
impl<'a> TestRunner<'a> {
/// Returns the status of the input handler.
pub fn input_handler_status(&self) -> InputHandlerStatus {
self.input_handler.status()
}
/// Executes the listed tests, each one in its own process.
///
/// The callback is called with the results of each test.
///
/// Returns an error if any of the tasks panicked.
pub fn execute<F>(
self,
mut callback: F,
) -> Result<RunStats, TestRunnerExecuteErrors<Infallible>>
where
F: FnMut(TestEvent<'a>) + Send,
{
self.try_execute::<Infallible, _>(|test_event| {
callback(test_event);
Ok(())
})
}
/// Executes the listed tests, each one in its own process.
///
/// Accepts a callback that is called with the results of each test. If the callback returns an
/// error, the test run terminates and the callback is no longer called.
///
/// Returns an error if any of the tasks panicked.
pub fn try_execute<E, F>(
mut self,
mut callback: F,
) -> Result<RunStats, TestRunnerExecuteErrors<E>>
where
F: FnMut(TestEvent<'a>) -> Result<(), E> + Send,
E: fmt::Debug + Send,
{
let (report_cancel_tx, report_cancel_rx) = oneshot::channel();
// If report_cancel_tx is None, at least one error has occurred and the
// runner has been instructed to shut down. first_error is also set to
// Some in that case.
let mut report_cancel_tx = Some(report_cancel_tx);
let mut first_error = None;
let res = self.inner.execute(
&mut self.signal_handler,
&mut self.input_handler,
report_cancel_rx,
|event| {
match callback(event) {
Ok(()) => {}
Err(error) => {
// If the callback fails, we need to let the runner know to start shutting
// down. But we keep reporting results in case the callback starts working
// again.
if let Some(report_cancel_tx) = report_cancel_tx.take() {
let _ = report_cancel_tx.send(());
first_error = Some(error);
}
}
}
},
);
// On Windows, the stdout and stderr futures might spawn processes that keep the runner
// stuck indefinitely if it's dropped the normal way. Shut it down aggressively, being OK
// with leaked resources.
self.inner.runtime.shutdown_background();
match (res, first_error) {
(Ok(run_stats), None) => Ok(run_stats),
(Ok(_), Some(report_error)) => Err(TestRunnerExecuteErrors {
report_error: Some(report_error),
join_errors: Vec::new(),
}),
(Err(join_errors), report_error) => Err(TestRunnerExecuteErrors {
report_error,
join_errors,
}),
}
}
}
#[derive(Debug)]
struct TestRunnerInner<'a> {
run_id: ReportUuid,
profile: &'a EvaluatableProfile<'a>,
test_list: &'a TestList<'a>,
test_threads: usize,
double_spawn: DoubleSpawnInfo,
target_runner: TargetRunner,
capture_strategy: CaptureStrategy,
force_retries: Option<RetryPolicy>,
cli_args: Vec<String>,
max_fail: MaxFail,
runtime: Runtime,
}
impl<'a> TestRunnerInner<'a> {
fn execute<F>(
&self,
signal_handler: &mut SignalHandler,
input_handler: &mut InputHandler,
report_cancel_rx: oneshot::Receiver<()>,
callback: F,
) -> Result<RunStats, Vec<JoinError>>
where
F: FnMut(TestEvent<'a>) + Send,
{
// TODO: add support for other test-running approaches, measure performance.
let mut dispatcher_cx = DispatcherContext::new(
callback,
self.run_id,
self.profile.name(),
self.cli_args.clone(),
self.test_list.run_count(),
self.max_fail,
);
let executor_cx = ExecutorContext::new(
self.run_id,
self.profile,
self.test_list,
self.double_spawn.clone(),
self.target_runner.clone(),
self.capture_strategy,
self.force_retries,
);
// Send the initial event.
// (Don't need to set the cancelled atomic if this fails because the run hasn't started
// yet.)
dispatcher_cx.run_started(self.test_list);
let executor_cx_ref = &executor_cx;
let dispatcher_cx_mut = &mut dispatcher_cx;
let _guard = self.runtime.enter();
let ((), results) = TokioScope::scope_and_block(move |scope| {
let (resp_tx, resp_rx) = unbounded_channel::<ExecutorEvent<'a>>();
// Run the dispatcher to completion in a task.
let dispatcher_fut =
dispatcher_cx_mut.run(resp_rx, signal_handler, input_handler, report_cancel_rx);
scope.spawn_cancellable(dispatcher_fut, || RunnerTaskState::Cancelled);
let (script_tx, mut script_rx) = unbounded_channel::<SetupScriptExecuteData<'a>>();
let script_resp_tx = resp_tx.clone();
let run_scripts_fut = async move {
// Since script tasks are run serially, we just reuse the one
// script task.
let script_data = executor_cx_ref.run_setup_scripts(script_resp_tx).await;
if script_tx.send(script_data).is_err() {
// The dispatcher has shut down, so we should too.
debug!("script_tx.send failed, shutting down");
}
RunnerTaskState::finished_no_children()
};
scope.spawn_cancellable(run_scripts_fut, || RunnerTaskState::Cancelled);
let Some(script_data) = script_rx.blocking_recv() else {
// Most likely the harness is shutting down, so we should too.
debug!("no script data received, shutting down");
return;
};
// groups is going to be passed to future_queue_grouped.
let groups = self
.profile
.test_group_config()
.iter()
.map(|(group_name, config)| (group_name, config.max_threads.compute()));
let setup_script_data = Arc::new(script_data);
let run_tests_fut = futures::stream::iter(self.test_list.iter_tests())
.map(move |test_instance: TestInstance<'a>| {
let query = test_instance.to_test_query();
let settings = self.profile.settings_for(&query);
let threads_required = settings.threads_required().compute(self.test_threads);
let test_group = match settings.test_group() {
TestGroup::Global => None,
TestGroup::Custom(name) => Some(name.clone()),
};
let resp_tx = resp_tx.clone();
let setup_script_data = setup_script_data.clone();
// Use a separate Tokio task for each test. For repos with
// lots of small tests, this has been observed to be much
// faster than using a single task for all tests (what we
// used to do). It also provides some degree of per-test
// isolation.
let fut = async move {
// SAFETY: Within an outer scope_and_block (which we
// have here), scope_and_collect is safe as long as the
// returned future isn't forgotten. We're not forgetting
// it below -- we're running it to completion
// immediately.
//
// But recursive scoped calls really feel like pushing
// against the limits of async-scoped. For example,
// there's no way built into async-scoped to propagate a
// cancellation signal from the outer scope to the inner
// scope. (But there could be, right? That seems
// solvable via channels. And we could likely do our own
// channels here.)
let ((), mut ret) = unsafe {
TokioScope::scope_and_collect(move |scope| {
scope.spawn(executor_cx_ref.run_test_instance(
test_instance,
settings,
resp_tx.clone(),
setup_script_data,
))
})
}
.await;
// If no future was started, that's really strange.
// Worth at least logging.
let Some(result) = ret.pop() else {
warn!(
"no task was started for test instance: {}",
test_instance.id()
);
return None;
};
match result {
Ok(()) => None,
Err(join_error) => Some(join_error),
}
};
(threads_required, test_group, fut)
})
// future_queue_grouped means tests are spawned in the order
// defined, but returned in any order.
.future_queue_grouped(self.test_threads, groups)
// Drop the None values.
.filter_map(std::future::ready)
.collect::<Vec<_>>()
// Interestingly, using a more idiomatic `async move {
// run_tests_fut.await ... }` block causes Rust 1.83 to complain
// about a weird lifetime mismatch. FutureExt::map as used below
// does not.
.map(|child_join_errors| RunnerTaskState::Finished { child_join_errors });
scope.spawn_cancellable(run_tests_fut, || RunnerTaskState::Cancelled);
});
dispatcher_cx.run_finished();
// Were there any join errors in tasks?
//
// If one of the tasks panics, we likely end up stuck because the
// dispatcher, which is spawned in the same async-scoped block, doesn't
// get relayed the panic immediately. That should probably be fixed at
// some point.
let mut cancelled_count = 0;
let join_errors = results
.into_iter()
.flat_map(|r| {
match r {
Ok(RunnerTaskState::Finished { child_join_errors }) => child_join_errors,
// Largely ignore cancelled tasks since it most likely means
// shutdown -- we don't cancel tasks manually.
Ok(RunnerTaskState::Cancelled) => {
cancelled_count += 1;
Vec::new()
}
Err(join_error) => vec![join_error],
}
})
.collect::<Vec<_>>();
if cancelled_count > 0 {
debug!(
"{} tasks were cancelled -- this \
generally should only happen due to panics",
cancelled_count
);
}
if !join_errors.is_empty() {
return Err(join_errors);
}
Ok(dispatcher_cx.run_stats())
}
}
/// Configures stdout, stdin and stderr inheritance by test processes on Windows.
///
/// With Rust on Windows, these handles can be held open by tests (and therefore by grandchild processes)
/// even if we run the tests with `Stdio::inherit`. This can cause problems with leaky tests.
///
/// This changes global state on the Win32 side, so the application must manage mutual exclusion
/// around it. Call this right before [`TestRunner::try_execute`].
///
/// This is a no-op on non-Windows platforms.
///
/// See [this issue on the Rust repository](https://github.com/rust-lang/rust/issues/54760) for more
/// discussion.
pub fn configure_handle_inheritance(
no_capture: bool,
) -> Result<(), ConfigureHandleInheritanceError> {
super::os::configure_handle_inheritance_impl(no_capture)
}
#[cfg(test)]
mod tests {
use super::*;
use crate::{config::NextestConfig, platform::BuildPlatforms};
#[test]
fn no_capture_settings() {
// Ensure that output settings are ignored with no-capture.
let mut builder = TestRunnerBuilder::default();
builder
.set_capture_strategy(CaptureStrategy::None)
.set_test_threads(TestThreads::Count(20));
let test_list = TestList::empty();
let config = NextestConfig::default_config("/fake/dir");
let profile = config.profile(NextestConfig::DEFAULT_PROFILE).unwrap();
let build_platforms = BuildPlatforms::new_with_no_target().unwrap();
let signal_handler = SignalHandlerKind::Noop;
let input_handler = InputHandlerKind::Noop;
let profile = profile.apply_build_platforms(&build_platforms);
let runner = builder
.build(
&test_list,
&profile,
vec![],
signal_handler,
input_handler,
DoubleSpawnInfo::disabled(),
TargetRunner::empty(),
)
.unwrap();
assert_eq!(runner.inner.capture_strategy, CaptureStrategy::None);
assert_eq!(runner.inner.test_threads, 1, "tests run serially");
}
}