tracing_subscriber/filter/layer_filters/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
//! ## Per-Layer Filtering
//!
//! Per-layer filters permit individual `Layer`s to have their own filter
//! configurations without interfering with other `Layer`s.
//!
//! This module is not public; the public APIs defined in this module are
//! re-exported in the top-level `filter` module. Therefore, this documentation
//! primarily concerns the internal implementation details. For the user-facing
//! public API documentation, see the individual public types in this module, as
//! well as the, see the `Layer` trait documentation's [per-layer filtering
//! section]][1].
//!
//! ## How does per-layer filtering work?
//!
//! As described in the API documentation, the [`Filter`] trait defines a
//! filtering strategy for a per-layer filter. We expect there will be a variety
//! of implementations of [`Filter`], both in `tracing-subscriber` and in user
//! code.
//!
//! To actually *use* a [`Filter`] implementation, it is combined with a
//! [`Layer`] by the [`Filtered`] struct defined in this module. [`Filtered`]
//! implements [`Layer`] by calling into the wrapped [`Layer`], or not, based on
//! the filtering strategy. While there will be a variety of types that implement
//! [`Filter`], all actual *uses* of per-layer filtering will occur through the
//! [`Filtered`] struct. Therefore, most of the implementation details live
//! there.
//!
//! [1]: crate::layer#per-layer-filtering
//! [`Filter`]: crate::layer::Filter
use crate::{
    filter::LevelFilter,
    layer::{self, Context, Layer},
    registry,
};
use std::{
    any::TypeId,
    cell::{Cell, RefCell},
    fmt,
    marker::PhantomData,
    ops::Deref,
    sync::Arc,
    thread_local,
};
use tracing_core::{
    span,
    subscriber::{Interest, Subscriber},
    Dispatch, Event, Metadata,
};
pub mod combinator;

/// A [`Layer`] that wraps an inner [`Layer`] and adds a [`Filter`] which
/// controls what spans and events are enabled for that layer.
///
/// This is returned by the [`Layer::with_filter`] method. See the
/// [documentation on per-layer filtering][plf] for details.
///
/// [`Filter`]: crate::layer::Filter
/// [plf]: crate::layer#per-layer-filtering
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
#[derive(Clone)]
pub struct Filtered<L, F, S> {
    filter: F,
    layer: L,
    id: MagicPlfDowncastMarker,
    _s: PhantomData<fn(S)>,
}

/// Uniquely identifies an individual [`Filter`] instance in the context of
/// a [`Subscriber`].
///
/// When adding a [`Filtered`] [`Layer`] to a [`Subscriber`], the [`Subscriber`]
/// generates a `FilterId` for that [`Filtered`] layer. The [`Filtered`] layer
/// will then use the generated ID to query whether a particular span was
/// previously enabled by that layer's [`Filter`].
///
/// **Note**: Currently, the [`Registry`] type provided by this crate is the
/// **only** [`Subscriber`] implementation capable of participating in per-layer
/// filtering. Therefore, the `FilterId` type cannot currently be constructed by
/// code outside of `tracing-subscriber`. In the future, new APIs will be added to `tracing-subscriber` to
/// allow non-Registry [`Subscriber`]s to also participate in per-layer
/// filtering. When those APIs are added, subscribers will be responsible
/// for generating and assigning `FilterId`s.
///
/// [`Filter`]: crate::layer::Filter
/// [`Subscriber`]: tracing_core::Subscriber
/// [`Layer`]: crate::layer::Layer
/// [`Registry`]: crate::registry::Registry
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
#[derive(Copy, Clone)]
pub struct FilterId(u64);

/// A bitmap tracking which [`FilterId`]s have enabled a given span or
/// event.
///
/// This is currently a private type that's used exclusively by the
/// [`Registry`]. However, in the future, this may become a public API, in order
/// to allow user subscribers to host [`Filter`]s.
///
/// [`Registry`]: crate::Registry
/// [`Filter`]: crate::layer::Filter
#[derive(Copy, Clone, Eq, PartialEq)]
pub(crate) struct FilterMap {
    bits: u64,
}

impl FilterMap {
    pub(crate) const fn new() -> Self {
        Self { bits: 0 }
    }
}

/// The current state of `enabled` calls to per-subscriber filters on this
/// thread.
///
/// When `Filtered::enabled` is called, the filter will set the bit
/// corresponding to its ID if the filter will disable the event/span being
/// filtered. When the event or span is recorded, the per-layer filter will
/// check its bit to determine if it disabled that event or span, and skip
/// forwarding the event or span to the inner layer if the bit is set. Once
/// a span or event has been skipped by a per-layer filter, it unsets its
/// bit, so that the `FilterMap` has been cleared for the next set of
/// `enabled` calls.
///
/// FilterState is also read by the `Registry`, for two reasons:
///
/// 1. When filtering a span, the Registry must store the `FilterMap`
///    generated by `Filtered::enabled` calls for that span as part of the
///    span's per-span data. This allows `Filtered` layers to determine
///    whether they had previously disabled a given span, and avoid showing it
///    to the wrapped layer if it was disabled.
///
///    This allows `Filtered` layers to also filter out the spans they
///    disable from span traversals (such as iterating over parents, etc).
/// 2. If all the bits are set, then every per-layer filter has decided it
///    doesn't want to enable that span or event. In that case, the
///    `Registry`'s `enabled` method will return `false`, so that
///     recording a span or event can be skipped entirely.
#[derive(Debug)]
pub(crate) struct FilterState {
    enabled: Cell<FilterMap>,
    // TODO(eliza): `Interest`s should _probably_ be `Copy`. The only reason
    // they're not is our Obsessive Commitment to Forwards-Compatibility. If
    // this changes in tracing-core`, we can make this a `Cell` rather than
    // `RefCell`...
    interest: RefCell<Option<Interest>>,

    #[cfg(debug_assertions)]
    counters: DebugCounters,
}

/// Extra counters added to `FilterState` used only to make debug assertions.
#[cfg(debug_assertions)]
#[derive(Debug)]
struct DebugCounters {
    /// How many per-layer filters have participated in the current `enabled`
    /// call?
    in_filter_pass: Cell<usize>,

    /// How many per-layer filters have participated in the current `register_callsite`
    /// call?
    in_interest_pass: Cell<usize>,
}

#[cfg(debug_assertions)]
impl DebugCounters {
    const fn new() -> Self {
        Self {
            in_filter_pass: Cell::new(0),
            in_interest_pass: Cell::new(0),
        }
    }
}

thread_local! {
    pub(crate) static FILTERING: FilterState = const { FilterState::new() };
}

/// Extension trait adding [combinators] for combining [`Filter`].
///
/// [combinators]: crate::filter::combinator
/// [`Filter`]: crate::layer::Filter
pub trait FilterExt<S>: layer::Filter<S> {
    /// Combines this [`Filter`] with another [`Filter`] s so that spans and
    /// events are enabled if and only if *both* filters return `true`.
    ///
    /// # Examples
    ///
    /// Enabling spans or events if they have both a particular target *and* are
    /// above a certain level:
    ///
    /// ```
    /// use tracing_subscriber::{
    ///     filter::{filter_fn, LevelFilter, FilterExt},
    ///     prelude::*,
    /// };
    ///
    /// // Enables spans and events with targets starting with `interesting_target`:
    /// let target_filter = filter_fn(|meta| {
    ///     meta.target().starts_with("interesting_target")
    /// });
    ///
    /// // Enables spans and events with levels `INFO` and below:
    /// let level_filter = LevelFilter::INFO;
    ///
    /// // Combine the two filters together, returning a filter that only enables
    /// // spans and events that *both* filters will enable:
    /// let filter = target_filter.and(level_filter);
    ///
    /// tracing_subscriber::registry()
    ///     .with(tracing_subscriber::fmt::layer().with_filter(filter))
    ///     .init();
    ///
    /// // This event will *not* be enabled:
    /// tracing::info!("an event with an uninteresting target");
    ///
    /// // This event *will* be enabled:
    /// tracing::info!(target: "interesting_target", "a very interesting event");
    ///
    /// // This event will *not* be enabled:
    /// tracing::debug!(target: "interesting_target", "interesting debug event...");
    /// ```
    ///
    /// [`Filter`]: crate::layer::Filter
    fn and<B>(self, other: B) -> combinator::And<Self, B, S>
    where
        Self: Sized,
        B: layer::Filter<S>,
    {
        combinator::And::new(self, other)
    }

    /// Combines two [`Filter`]s so that spans and events are enabled if *either* filter
    /// returns `true`.
    ///
    /// # Examples
    ///
    /// Enabling spans and events at the `INFO` level and above, and all spans
    /// and events with a particular target:
    /// ```
    /// use tracing_subscriber::{
    ///     filter::{filter_fn, LevelFilter, FilterExt},
    ///     prelude::*,
    /// };
    ///
    /// // Enables spans and events with targets starting with `interesting_target`:
    /// let target_filter = filter_fn(|meta| {
    ///     meta.target().starts_with("interesting_target")
    /// });
    ///
    /// // Enables spans and events with levels `INFO` and below:
    /// let level_filter = LevelFilter::INFO;
    ///
    /// // Combine the two filters together so that a span or event is enabled
    /// // if it is at INFO or lower, or if it has a target starting with
    /// // `interesting_target`.
    /// let filter = level_filter.or(target_filter);
    ///
    /// tracing_subscriber::registry()
    ///     .with(tracing_subscriber::fmt::layer().with_filter(filter))
    ///     .init();
    ///
    /// // This event will *not* be enabled:
    /// tracing::debug!("an uninteresting event");
    ///
    /// // This event *will* be enabled:
    /// tracing::info!("an uninteresting INFO event");
    ///
    /// // This event *will* be enabled:
    /// tracing::info!(target: "interesting_target", "a very interesting event");
    ///
    /// // This event *will* be enabled:
    /// tracing::debug!(target: "interesting_target", "interesting debug event...");
    /// ```
    ///
    /// Enabling a higher level for a particular target by using `or` in
    /// conjunction with the [`and`] combinator:
    ///
    /// ```
    /// use tracing_subscriber::{
    ///     filter::{filter_fn, LevelFilter, FilterExt},
    ///     prelude::*,
    /// };
    ///
    /// // This filter will enable spans and events with targets beginning with
    /// // `my_crate`:
    /// let my_crate = filter_fn(|meta| {
    ///     meta.target().starts_with("my_crate")
    /// });
    ///
    /// let filter = my_crate
    ///     // Combine the `my_crate` filter with a `LevelFilter` to produce a
    ///     // filter that will enable the `INFO` level and lower for spans and
    ///     // events with `my_crate` targets:
    ///     .and(LevelFilter::INFO)
    ///     // If a span or event *doesn't* have a target beginning with
    ///     // `my_crate`, enable it if it has the `WARN` level or lower:
    ///     .or(LevelFilter::WARN);
    ///
    /// tracing_subscriber::registry()
    ///     .with(tracing_subscriber::fmt::layer().with_filter(filter))
    ///     .init();
    /// ```
    ///
    /// [`Filter`]: crate::layer::Filter
    /// [`and`]: FilterExt::and
    fn or<B>(self, other: B) -> combinator::Or<Self, B, S>
    where
        Self: Sized,
        B: layer::Filter<S>,
    {
        combinator::Or::new(self, other)
    }

    /// Inverts `self`, returning a filter that enables spans and events only if
    /// `self` would *not* enable them.
    ///
    /// This inverts the values returned by the [`enabled`] and [`callsite_enabled`]
    /// methods on the wrapped filter; it does *not* invert [`event_enabled`], as
    /// filters which do not implement filtering on event field values will return
    /// the default `true` even for events that their [`enabled`] method disables.
    ///
    /// Consider a normal filter defined as:
    ///
    /// ```ignore (pseudo-code)
    /// // for spans
    /// match callsite_enabled() {
    ///     ALWAYS => on_span(),
    ///     SOMETIMES => if enabled() { on_span() },
    ///     NEVER => (),
    /// }
    /// // for events
    /// match callsite_enabled() {
    ///    ALWAYS => on_event(),
    ///    SOMETIMES => if enabled() && event_enabled() { on_event() },
    ///    NEVER => (),
    /// }
    /// ```
    ///
    /// and an inverted filter defined as:
    ///
    /// ```ignore (pseudo-code)
    /// // for spans
    /// match callsite_enabled() {
    ///     ALWAYS => (),
    ///     SOMETIMES => if !enabled() { on_span() },
    ///     NEVER => on_span(),
    /// }
    /// // for events
    /// match callsite_enabled() {
    ///     ALWAYS => (),
    ///     SOMETIMES => if !enabled() { on_event() },
    ///     NEVER => on_event(),
    /// }
    /// ```
    ///
    /// A proper inversion would do `!(enabled() && event_enabled())` (or
    /// `!enabled() || !event_enabled()`), but because of the implicit `&&`
    /// relation between `enabled` and `event_enabled`, it is difficult to
    /// short circuit and not call the wrapped `event_enabled`.
    ///
    /// A combinator which remembers the result of `enabled` in order to call
    /// `event_enabled` only when `enabled() == true` is possible, but requires
    /// additional thread-local mutable state to support a very niche use case.
    //
    //  Also, it'd mean the wrapped layer's `enabled()` always gets called and
    //  globally applied to events where it doesn't today, since we can't know
    //  what `event_enabled` will say until we have the event to call it with.
    ///
    /// [`Filter`]: crate::layer::Filter
    /// [`enabled`]: crate::layer::Filter::enabled
    /// [`event_enabled`]: crate::layer::Filter::event_enabled
    /// [`callsite_enabled`]: crate::layer::Filter::callsite_enabled
    fn not(self) -> combinator::Not<Self, S>
    where
        Self: Sized,
    {
        combinator::Not::new(self)
    }

    /// [Boxes] `self`, erasing its concrete type.
    ///
    /// This is equivalent to calling [`Box::new`], but in method form, so that
    /// it can be used when chaining combinator methods.
    ///
    /// # Examples
    ///
    /// When different combinations of filters are used conditionally, they may
    /// have different types. For example, the following code won't compile,
    /// since the `if` and `else` clause produce filters of different types:
    ///
    /// ```compile_fail
    /// use tracing_subscriber::{
    ///     filter::{filter_fn, LevelFilter, FilterExt},
    ///     prelude::*,
    /// };
    ///
    /// let enable_bar_target: bool = // ...
    /// # false;
    ///
    /// let filter = if enable_bar_target {
    ///     filter_fn(|meta| meta.target().starts_with("foo"))
    ///         // If `enable_bar_target` is true, add a `filter_fn` enabling
    ///         // spans and events with the target `bar`:
    ///         .or(filter_fn(|meta| meta.target().starts_with("bar")))
    ///         .and(LevelFilter::INFO)
    /// } else {
    ///     filter_fn(|meta| meta.target().starts_with("foo"))
    ///         .and(LevelFilter::INFO)
    /// };
    ///
    /// tracing_subscriber::registry()
    ///     .with(tracing_subscriber::fmt::layer().with_filter(filter))
    ///     .init();
    /// ```
    ///
    /// By using `boxed`, the types of the two different branches can be erased,
    /// so the assignment to the `filter` variable is valid (as both branches
    /// have the type `Box<dyn Filter<S> + Send + Sync + 'static>`). The
    /// following code *does* compile:
    ///
    /// ```
    /// use tracing_subscriber::{
    ///     filter::{filter_fn, LevelFilter, FilterExt},
    ///     prelude::*,
    /// };
    ///
    /// let enable_bar_target: bool = // ...
    /// # false;
    ///
    /// let filter = if enable_bar_target {
    ///     filter_fn(|meta| meta.target().starts_with("foo"))
    ///         .or(filter_fn(|meta| meta.target().starts_with("bar")))
    ///         .and(LevelFilter::INFO)
    ///         // Boxing the filter erases its type, so both branches now
    ///         // have the same type.
    ///         .boxed()
    /// } else {
    ///     filter_fn(|meta| meta.target().starts_with("foo"))
    ///         .and(LevelFilter::INFO)
    ///         .boxed()
    /// };
    ///
    /// tracing_subscriber::registry()
    ///     .with(tracing_subscriber::fmt::layer().with_filter(filter))
    ///     .init();
    /// ```
    ///
    /// [Boxes]: std::boxed
    /// [`Box::new`]: std::boxed::Box::new
    fn boxed(self) -> Box<dyn layer::Filter<S> + Send + Sync + 'static>
    where
        Self: Sized + Send + Sync + 'static,
    {
        Box::new(self)
    }
}

// === impl Filter ===

#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for LevelFilter {
    fn enabled(&self, meta: &Metadata<'_>, _: &Context<'_, S>) -> bool {
        meta.level() <= self
    }

    fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
        if meta.level() <= self {
            Interest::always()
        } else {
            Interest::never()
        }
    }

    fn max_level_hint(&self) -> Option<LevelFilter> {
        Some(*self)
    }
}

macro_rules! filter_impl_body {
    () => {
        #[inline]
        fn enabled(&self, meta: &Metadata<'_>, cx: &Context<'_, S>) -> bool {
            self.deref().enabled(meta, cx)
        }

        #[inline]
        fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
            self.deref().callsite_enabled(meta)
        }

        #[inline]
        fn max_level_hint(&self) -> Option<LevelFilter> {
            self.deref().max_level_hint()
        }

        #[inline]
        fn event_enabled(&self, event: &Event<'_>, cx: &Context<'_, S>) -> bool {
            self.deref().event_enabled(event, cx)
        }

        #[inline]
        fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
            self.deref().on_new_span(attrs, id, ctx)
        }

        #[inline]
        fn on_record(&self, id: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
            self.deref().on_record(id, values, ctx)
        }

        #[inline]
        fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
            self.deref().on_enter(id, ctx)
        }

        #[inline]
        fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
            self.deref().on_exit(id, ctx)
        }

        #[inline]
        fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
            self.deref().on_close(id, ctx)
        }
    };
}

#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for Arc<dyn layer::Filter<S> + Send + Sync + 'static> {
    filter_impl_body!();
}

#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<S> layer::Filter<S> for Box<dyn layer::Filter<S> + Send + Sync + 'static> {
    filter_impl_body!();
}

// Implement Filter for Option<Filter> where None => allow
#[cfg(feature = "registry")]
#[cfg_attr(docsrs, doc(cfg(feature = "registry")))]
impl<F, S> layer::Filter<S> for Option<F>
where
    F: layer::Filter<S>,
{
    #[inline]
    fn enabled(&self, meta: &Metadata<'_>, ctx: &Context<'_, S>) -> bool {
        self.as_ref()
            .map(|inner| inner.enabled(meta, ctx))
            .unwrap_or(true)
    }

    #[inline]
    fn callsite_enabled(&self, meta: &'static Metadata<'static>) -> Interest {
        self.as_ref()
            .map(|inner| inner.callsite_enabled(meta))
            .unwrap_or_else(Interest::always)
    }

    #[inline]
    fn max_level_hint(&self) -> Option<LevelFilter> {
        self.as_ref().and_then(|inner| inner.max_level_hint())
    }

    #[inline]
    fn event_enabled(&self, event: &Event<'_>, ctx: &Context<'_, S>) -> bool {
        self.as_ref()
            .map(|inner| inner.event_enabled(event, ctx))
            .unwrap_or(true)
    }

    #[inline]
    fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, ctx: Context<'_, S>) {
        if let Some(inner) = self {
            inner.on_new_span(attrs, id, ctx)
        }
    }

    #[inline]
    fn on_record(&self, id: &span::Id, values: &span::Record<'_>, ctx: Context<'_, S>) {
        if let Some(inner) = self {
            inner.on_record(id, values, ctx)
        }
    }

    #[inline]
    fn on_enter(&self, id: &span::Id, ctx: Context<'_, S>) {
        if let Some(inner) = self {
            inner.on_enter(id, ctx)
        }
    }

    #[inline]
    fn on_exit(&self, id: &span::Id, ctx: Context<'_, S>) {
        if let Some(inner) = self {
            inner.on_exit(id, ctx)
        }
    }

    #[inline]
    fn on_close(&self, id: span::Id, ctx: Context<'_, S>) {
        if let Some(inner) = self {
            inner.on_close(id, ctx)
        }
    }
}

// === impl Filtered ===

impl<L, F, S> Filtered<L, F, S> {
    /// Wraps the provided [`Layer`] so that it is filtered by the given
    /// [`Filter`].
    ///
    /// This is equivalent to calling the [`Layer::with_filter`] method.
    ///
    /// See the [documentation on per-layer filtering][plf] for details.
    ///
    /// [`Filter`]: crate::layer::Filter
    /// [plf]: crate::layer#per-layer-filtering
    pub fn new(layer: L, filter: F) -> Self {
        Self {
            layer,
            filter,
            id: MagicPlfDowncastMarker(FilterId::disabled()),
            _s: PhantomData,
        }
    }

    #[inline(always)]
    fn id(&self) -> FilterId {
        debug_assert!(
            !self.id.0.is_disabled(),
            "a `Filtered` layer was used, but it had no `FilterId`; \
            was it registered with the subscriber?"
        );
        self.id.0
    }

    fn did_enable(&self, f: impl FnOnce()) {
        FILTERING.with(|filtering| filtering.did_enable(self.id(), f))
    }

    /// Borrows the [`Filter`](crate::layer::Filter) used by this layer.
    pub fn filter(&self) -> &F {
        &self.filter
    }

    /// Mutably borrows the [`Filter`](crate::layer::Filter) used by this layer.
    ///
    /// When this layer can be mutably borrowed, this may be used to mutate the filter.
    /// Generally, this will primarily be used with the
    /// [`reload::Handle::modify`](crate::reload::Handle::modify) method.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tracing::info;
    /// # use tracing_subscriber::{filter,fmt,reload,Registry,prelude::*};
    /// # fn main() {
    /// let filtered_layer = fmt::Layer::default().with_filter(filter::LevelFilter::WARN);
    /// let (filtered_layer, reload_handle) = reload::Layer::new(filtered_layer);
    /// #
    /// # // specifying the Registry type is required
    /// # let _: &reload::Handle<filter::Filtered<fmt::Layer<Registry>,
    /// # filter::LevelFilter, Registry>,Registry>
    /// # = &reload_handle;
    /// #
    /// info!("This will be ignored");
    /// reload_handle.modify(|layer| *layer.filter_mut() = filter::LevelFilter::INFO);
    /// info!("This will be logged");
    /// # }
    /// ```
    pub fn filter_mut(&mut self) -> &mut F {
        &mut self.filter
    }

    /// Borrows the inner [`Layer`] wrapped by this `Filtered` layer.
    pub fn inner(&self) -> &L {
        &self.layer
    }

    /// Mutably borrows the inner [`Layer`] wrapped by this `Filtered` layer.
    ///
    /// This method is primarily expected to be used with the
    /// [`reload::Handle::modify`](crate::reload::Handle::modify) method.
    ///
    /// # Examples
    ///
    /// ```
    /// # use tracing::info;
    /// # use tracing_subscriber::{filter,fmt,reload,Registry,prelude::*};
    /// # fn non_blocking<T: std::io::Write>(writer: T) -> (fn() -> std::io::Stdout) {
    /// #   std::io::stdout
    /// # }
    /// # fn main() {
    /// let filtered_layer = fmt::layer().with_writer(non_blocking(std::io::stderr())).with_filter(filter::LevelFilter::INFO);
    /// let (filtered_layer, reload_handle) = reload::Layer::new(filtered_layer);
    /// #
    /// # // specifying the Registry type is required
    /// # let _: &reload::Handle<filter::Filtered<fmt::Layer<Registry, _, _, fn() -> std::io::Stdout>,
    /// # filter::LevelFilter, Registry>, Registry>
    /// # = &reload_handle;
    /// #
    /// info!("This will be logged to stderr");
    /// reload_handle.modify(|layer| *layer.inner_mut().writer_mut() = non_blocking(std::io::stdout()));
    /// info!("This will be logged to stdout");
    /// # }
    /// ```
    ///
    /// [`Layer`]: crate::layer::Layer
    pub fn inner_mut(&mut self) -> &mut L {
        &mut self.layer
    }
}

impl<S, L, F> Layer<S> for Filtered<L, F, S>
where
    S: Subscriber + for<'span> registry::LookupSpan<'span> + 'static,
    F: layer::Filter<S> + 'static,
    L: Layer<S>,
{
    fn on_register_dispatch(&self, subscriber: &Dispatch) {
        self.layer.on_register_dispatch(subscriber);
    }

    fn on_layer(&mut self, subscriber: &mut S) {
        self.id = MagicPlfDowncastMarker(subscriber.register_filter());
        self.layer.on_layer(subscriber);
    }

    // TODO(eliza): can we figure out a nice way to make the `Filtered` layer
    // not call `is_enabled_for` in hooks that the inner layer doesn't actually
    // have real implementations of? probably not...
    //
    // it would be cool if there was some wild rust reflection way of checking
    // if a trait impl has the default impl of a trait method or not, but that's
    // almost certainly impossible...right?

    fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest {
        let interest = self.filter.callsite_enabled(metadata);

        // If the filter didn't disable the callsite, allow the inner layer to
        // register it — since `register_callsite` is also used for purposes
        // such as reserving/caching per-callsite data, we want the inner layer
        // to be able to perform any other registration steps. However, we'll
        // ignore its `Interest`.
        if !interest.is_never() {
            self.layer.register_callsite(metadata);
        }

        // Add our `Interest` to the current sum of per-layer filter `Interest`s
        // for this callsite.
        FILTERING.with(|filtering| filtering.add_interest(interest));

        // don't short circuit! if the stack consists entirely of `Layer`s with
        // per-layer filters, the `Registry` will return the actual `Interest`
        // value that's the sum of all the `register_callsite` calls to those
        // per-layer filters. if we returned an actual `never` interest here, a
        // `Layered` layer would short-circuit and not allow any `Filtered`
        // layers below us if _they_ are interested in the callsite.
        Interest::always()
    }

    fn enabled(&self, metadata: &Metadata<'_>, cx: Context<'_, S>) -> bool {
        let cx = cx.with_filter(self.id());
        let enabled = self.filter.enabled(metadata, &cx);
        FILTERING.with(|filtering| filtering.set(self.id(), enabled));

        if enabled {
            // If the filter enabled this metadata, ask the wrapped layer if
            // _it_ wants it --- it might have a global filter.
            self.layer.enabled(metadata, cx)
        } else {
            // Otherwise, return `true`. The _per-layer_ filter disabled this
            // metadata, but returning `false` in `Layer::enabled` will
            // short-circuit and globally disable the span or event. This is
            // *not* what we want for per-layer filters, as other layers may
            // still want this event. Returning `true` here means we'll continue
            // asking the next layer in the stack.
            //
            // Once all per-layer filters have been evaluated, the `Registry`
            // at the root of the stack will return `false` from its `enabled`
            // method if *every* per-layer  filter disabled this metadata.
            // Otherwise, the individual per-layer filters will skip the next
            // `new_span` or `on_event` call for their layer if *they* disabled
            // the span or event, but it was not globally disabled.
            true
        }
    }

    fn on_new_span(&self, attrs: &span::Attributes<'_>, id: &span::Id, cx: Context<'_, S>) {
        self.did_enable(|| {
            let cx = cx.with_filter(self.id());
            self.filter.on_new_span(attrs, id, cx.clone());
            self.layer.on_new_span(attrs, id, cx);
        })
    }

    #[doc(hidden)]
    fn max_level_hint(&self) -> Option<LevelFilter> {
        self.filter.max_level_hint()
    }

    fn on_record(&self, span: &span::Id, values: &span::Record<'_>, cx: Context<'_, S>) {
        if let Some(cx) = cx.if_enabled_for(span, self.id()) {
            self.filter.on_record(span, values, cx.clone());
            self.layer.on_record(span, values, cx)
        }
    }

    fn on_follows_from(&self, span: &span::Id, follows: &span::Id, cx: Context<'_, S>) {
        // only call `on_follows_from` if both spans are enabled by us
        if cx.is_enabled_for(span, self.id()) && cx.is_enabled_for(follows, self.id()) {
            self.layer
                .on_follows_from(span, follows, cx.with_filter(self.id()))
        }
    }

    fn event_enabled(&self, event: &Event<'_>, cx: Context<'_, S>) -> bool {
        let cx = cx.with_filter(self.id());
        let enabled = FILTERING
            .with(|filtering| filtering.and(self.id(), || self.filter.event_enabled(event, &cx)));

        if enabled {
            // If the filter enabled this event, ask the wrapped subscriber if
            // _it_ wants it --- it might have a global filter.
            self.layer.event_enabled(event, cx)
        } else {
            // Otherwise, return `true`. See the comment in `enabled` for why this
            // is necessary.
            true
        }
    }

    fn on_event(&self, event: &Event<'_>, cx: Context<'_, S>) {
        self.did_enable(|| {
            self.layer.on_event(event, cx.with_filter(self.id()));
        })
    }

    fn on_enter(&self, id: &span::Id, cx: Context<'_, S>) {
        if let Some(cx) = cx.if_enabled_for(id, self.id()) {
            self.filter.on_enter(id, cx.clone());
            self.layer.on_enter(id, cx);
        }
    }

    fn on_exit(&self, id: &span::Id, cx: Context<'_, S>) {
        if let Some(cx) = cx.if_enabled_for(id, self.id()) {
            self.filter.on_exit(id, cx.clone());
            self.layer.on_exit(id, cx);
        }
    }

    fn on_close(&self, id: span::Id, cx: Context<'_, S>) {
        if let Some(cx) = cx.if_enabled_for(&id, self.id()) {
            self.filter.on_close(id.clone(), cx.clone());
            self.layer.on_close(id, cx);
        }
    }

    // XXX(eliza): the existence of this method still makes me sad...
    fn on_id_change(&self, old: &span::Id, new: &span::Id, cx: Context<'_, S>) {
        if let Some(cx) = cx.if_enabled_for(old, self.id()) {
            self.layer.on_id_change(old, new, cx)
        }
    }

    #[doc(hidden)]
    #[inline]
    unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()> {
        match id {
            id if id == TypeId::of::<Self>() => Some(self as *const _ as *const ()),
            id if id == TypeId::of::<L>() => Some(&self.layer as *const _ as *const ()),
            id if id == TypeId::of::<F>() => Some(&self.filter as *const _ as *const ()),
            id if id == TypeId::of::<MagicPlfDowncastMarker>() => {
                Some(&self.id as *const _ as *const ())
            }
            _ => self.layer.downcast_raw(id),
        }
    }
}

impl<F, L, S> fmt::Debug for Filtered<F, L, S>
where
    F: fmt::Debug,
    L: fmt::Debug,
{
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("Filtered")
            .field("filter", &self.filter)
            .field("layer", &self.layer)
            .field("id", &self.id)
            .finish()
    }
}

// === impl FilterId ===

impl FilterId {
    const fn disabled() -> Self {
        Self(u64::MAX)
    }

    /// Returns a `FilterId` that will consider _all_ spans enabled.
    pub(crate) const fn none() -> Self {
        Self(0)
    }

    pub(crate) fn new(id: u8) -> Self {
        assert!(id < 64, "filter IDs may not be greater than 64");
        Self(1 << id as usize)
    }

    /// Combines two `FilterId`s, returning a new `FilterId` that will match a
    /// [`FilterMap`] where the span was disabled by _either_ this `FilterId`
    /// *or* the combined `FilterId`.
    ///
    /// This method is called by [`Context`]s when adding the `FilterId` of a
    /// [`Filtered`] layer to the context.
    ///
    /// This is necessary for cases where we have a tree of nested [`Filtered`]
    /// layers, like this:
    ///
    /// ```text
    /// Filtered {
    ///     filter1,
    ///     Layered {
    ///         layer1,
    ///         Filtered {
    ///              filter2,
    ///              layer2,
    ///         },
    /// }
    /// ```
    ///
    /// We want `layer2` to be affected by both `filter1` _and_ `filter2`.
    /// Without combining `FilterId`s, this works fine when filtering
    /// `on_event`/`new_span`, because the outer `Filtered` layer (`filter1`)
    /// won't call the inner layer's `on_event` or `new_span` callbacks if it
    /// disabled the event/span.
    ///
    /// However, it _doesn't_ work when filtering span lookups and traversals
    /// (e.g. `scope`). This is because the [`Context`] passed to `layer2`
    /// would set its filter ID to the filter ID of `filter2`, and would skip
    /// spans that were disabled by `filter2`. However, what if a span was
    /// disabled by `filter1`? We wouldn't see it in `new_span`, but we _would_
    /// see it in lookups and traversals...which we don't want.
    ///
    /// When a [`Filtered`] layer adds its ID to a [`Context`], it _combines_ it
    /// with any previous filter ID that the context had, rather than replacing
    /// it. That way, `layer2`'s context will check if a span was disabled by
    /// `filter1` _or_ `filter2`. The way we do this, instead of representing
    /// `FilterId`s as a number number that we shift a 1 over by to get a mask,
    /// we just store the actual mask,so we can combine them with a bitwise-OR.
    ///
    /// For example, if we consider the following case (pretending that the
    /// masks are 8 bits instead of 64 just so i don't have to write out a bunch
    /// of extra zeroes):
    ///
    /// - `filter1` has the filter id 1 (`0b0000_0001`)
    /// - `filter2` has the filter id 2 (`0b0000_0010`)
    ///
    /// A span that gets disabled by filter 1 would have the [`FilterMap`] with
    /// bits `0b0000_0001`.
    ///
    /// If the `FilterId` was internally represented as `(bits to shift + 1),
    /// when `layer2`'s [`Context`] checked if it enabled the  span, it would
    /// make the mask `0b0000_0010` (`1 << 1`). That bit would not be set in the
    /// [`FilterMap`], so it would see that it _didn't_ disable  the span. Which
    /// is *true*, it just doesn't reflect the tree-like shape of the actual
    /// subscriber.
    ///
    /// By having the IDs be masks instead of shifts, though, when the
    /// [`Filtered`] with `filter2` gets the [`Context`] with `filter1`'s filter ID,
    /// instead of replacing it, it ors them together:
    ///
    /// ```ignore
    /// 0b0000_0001 | 0b0000_0010 == 0b0000_0011;
    /// ```
    ///
    /// We then test if the span was disabled by  seeing if _any_ bits in the
    /// mask are `1`:
    ///
    /// ```ignore
    /// filtermap & mask != 0;
    /// 0b0000_0001 & 0b0000_0011 != 0;
    /// 0b0000_0001 != 0;
    /// true;
    /// ```
    ///
    /// [`Context`]: crate::layer::Context
    pub(crate) fn and(self, FilterId(other): Self) -> Self {
        // If this mask is disabled, just return the other --- otherwise, we
        // would always see that every span is disabled.
        if self.0 == Self::disabled().0 {
            return Self(other);
        }

        Self(self.0 | other)
    }

    fn is_disabled(self) -> bool {
        self.0 == Self::disabled().0
    }
}

impl fmt::Debug for FilterId {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // don't print a giant set of the numbers 0..63 if the filter ID is disabled.
        if self.0 == Self::disabled().0 {
            return f
                .debug_tuple("FilterId")
                .field(&format_args!("DISABLED"))
                .finish();
        }

        if f.alternate() {
            f.debug_struct("FilterId")
                .field("ids", &format_args!("{:?}", FmtBitset(self.0)))
                .field("bits", &format_args!("{:b}", self.0))
                .finish()
        } else {
            f.debug_tuple("FilterId").field(&FmtBitset(self.0)).finish()
        }
    }
}

impl fmt::Binary for FilterId {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("FilterId")
            .field(&format_args!("{:b}", self.0))
            .finish()
    }
}

// === impl FilterExt ===

impl<F, S> FilterExt<S> for F where F: layer::Filter<S> {}

// === impl FilterMap ===

impl FilterMap {
    pub(crate) fn set(self, FilterId(mask): FilterId, enabled: bool) -> Self {
        if mask == u64::MAX {
            return self;
        }

        if enabled {
            Self {
                bits: self.bits & (!mask),
            }
        } else {
            Self {
                bits: self.bits | mask,
            }
        }
    }

    #[inline]
    pub(crate) fn is_enabled(self, FilterId(mask): FilterId) -> bool {
        self.bits & mask == 0
    }

    #[inline]
    pub(crate) fn any_enabled(self) -> bool {
        self.bits != u64::MAX
    }
}

impl fmt::Debug for FilterMap {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let alt = f.alternate();
        let mut s = f.debug_struct("FilterMap");
        s.field("disabled_by", &format_args!("{:?}", &FmtBitset(self.bits)));

        if alt {
            s.field("bits", &format_args!("{:b}", self.bits));
        }

        s.finish()
    }
}

impl fmt::Binary for FilterMap {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_struct("FilterMap")
            .field("bits", &format_args!("{:b}", self.bits))
            .finish()
    }
}

// === impl FilterState ===

impl FilterState {
    const fn new() -> Self {
        Self {
            enabled: Cell::new(FilterMap::new()),
            interest: RefCell::new(None),

            #[cfg(debug_assertions)]
            counters: DebugCounters::new(),
        }
    }

    fn set(&self, filter: FilterId, enabled: bool) {
        #[cfg(debug_assertions)]
        {
            let in_current_pass = self.counters.in_filter_pass.get();
            if in_current_pass == 0 {
                debug_assert_eq!(self.enabled.get(), FilterMap::new());
            }
            self.counters.in_filter_pass.set(in_current_pass + 1);
            debug_assert_eq!(
                self.counters.in_interest_pass.get(),
                0,
                "if we are in or starting a filter pass, we must not be in an interest pass."
            )
        }

        self.enabled.set(self.enabled.get().set(filter, enabled))
    }

    fn add_interest(&self, interest: Interest) {
        let mut curr_interest = self.interest.borrow_mut();

        #[cfg(debug_assertions)]
        {
            let in_current_pass = self.counters.in_interest_pass.get();
            if in_current_pass == 0 {
                debug_assert!(curr_interest.is_none());
            }
            self.counters.in_interest_pass.set(in_current_pass + 1);
        }

        if let Some(curr_interest) = curr_interest.as_mut() {
            if (curr_interest.is_always() && !interest.is_always())
                || (curr_interest.is_never() && !interest.is_never())
            {
                *curr_interest = Interest::sometimes();
            }
            // If the two interests are the same, do nothing. If the current
            // interest is `sometimes`, stay sometimes.
        } else {
            *curr_interest = Some(interest);
        }
    }

    pub(crate) fn event_enabled() -> bool {
        FILTERING
            .try_with(|this| {
                let enabled = this.enabled.get().any_enabled();
                #[cfg(debug_assertions)]
                {
                    if this.counters.in_filter_pass.get() == 0 {
                        debug_assert_eq!(this.enabled.get(), FilterMap::new());
                    }

                    // Nothing enabled this event, we won't tick back down the
                    // counter in `did_enable`. Reset it.
                    if !enabled {
                        this.counters.in_filter_pass.set(0);
                    }
                }
                enabled
            })
            .unwrap_or(true)
    }

    /// Executes a closure if the filter with the provided ID did not disable
    /// the current span/event.
    ///
    /// This is used to implement the `on_event` and `new_span` methods for
    /// `Filtered`.
    fn did_enable(&self, filter: FilterId, f: impl FnOnce()) {
        let map = self.enabled.get();
        if map.is_enabled(filter) {
            // If the filter didn't disable the current span/event, run the
            // callback.
            f();
        } else {
            // Otherwise, if this filter _did_ disable the span or event
            // currently being processed, clear its bit from this thread's
            // `FilterState`. The bit has already been "consumed" by skipping
            // this callback, and we need to ensure that the `FilterMap` for
            // this thread is reset when the *next* `enabled` call occurs.
            self.enabled.set(map.set(filter, true));
        }
        #[cfg(debug_assertions)]
        {
            let in_current_pass = self.counters.in_filter_pass.get();
            if in_current_pass <= 1 {
                debug_assert_eq!(self.enabled.get(), FilterMap::new());
            }
            self.counters
                .in_filter_pass
                .set(in_current_pass.saturating_sub(1));
            debug_assert_eq!(
                self.counters.in_interest_pass.get(),
                0,
                "if we are in a filter pass, we must not be in an interest pass."
            )
        }
    }

    /// Run a second filtering pass, e.g. for Layer::event_enabled.
    fn and(&self, filter: FilterId, f: impl FnOnce() -> bool) -> bool {
        let map = self.enabled.get();
        let enabled = map.is_enabled(filter) && f();
        self.enabled.set(map.set(filter, enabled));
        enabled
    }

    /// Clears the current in-progress filter state.
    ///
    /// This resets the [`FilterMap`] and current [`Interest`] as well as
    /// clearing the debug counters.
    pub(crate) fn clear_enabled() {
        // Drop the `Result` returned by `try_with` --- if we are in the middle
        // a panic and the thread-local has been torn down, that's fine, just
        // ignore it ratehr than panicking.
        let _ = FILTERING.try_with(|filtering| {
            filtering.enabled.set(FilterMap::new());

            #[cfg(debug_assertions)]
            filtering.counters.in_filter_pass.set(0);
        });
    }

    pub(crate) fn take_interest() -> Option<Interest> {
        FILTERING
            .try_with(|filtering| {
                #[cfg(debug_assertions)]
                {
                    if filtering.counters.in_interest_pass.get() == 0 {
                        debug_assert!(filtering.interest.try_borrow().ok()?.is_none());
                    }
                    filtering.counters.in_interest_pass.set(0);
                }
                filtering.interest.try_borrow_mut().ok()?.take()
            })
            .ok()?
    }

    pub(crate) fn filter_map(&self) -> FilterMap {
        let map = self.enabled.get();
        #[cfg(debug_assertions)]
        if self.counters.in_filter_pass.get() == 0 {
            debug_assert_eq!(map, FilterMap::new());
        }

        map
    }
}
/// This is a horrible and bad abuse of the downcasting system to expose
/// *internally* whether a layer has per-layer filtering, within
/// `tracing-subscriber`, without exposing a public API for it.
///
/// If a `Layer` has per-layer filtering, it will downcast to a
/// `MagicPlfDowncastMarker`. Since layers which contain other layers permit
/// downcasting to recurse to their children, this will do the Right Thing with
/// layers like Reload, Option, etc.
///
/// Why is this a wrapper around the `FilterId`, you may ask? Because
/// downcasting works by returning a pointer, and we don't want to risk
/// introducing UB by  constructing pointers that _don't_ point to a valid
/// instance of the type they claim to be. In this case, we don't _intend_ for
/// this pointer to be dereferenced, so it would actually be fine to return one
/// that isn't a valid pointer...but we can't guarantee that the caller won't
/// (accidentally) dereference it, so it's better to be safe than sorry. We
/// could, alternatively, add an additional field to the type that's used only
/// for returning pointers to as as part of the evil downcasting hack, but I
/// thought it was nicer to just add a `repr(transparent)` wrapper to the
/// existing `FilterId` field, since it won't make the struct any bigger.
///
/// Don't worry, this isn't on the test. :)
#[derive(Clone, Copy)]
#[repr(transparent)]
struct MagicPlfDowncastMarker(FilterId);
impl fmt::Debug for MagicPlfDowncastMarker {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        // Just pretend that `MagicPlfDowncastMarker` doesn't exist for
        // `fmt::Debug` purposes...if no one *sees* it in their `Debug` output,
        // they don't have to know I thought this code would be a good idea.
        fmt::Debug::fmt(&self.0, f)
    }
}

pub(crate) fn is_plf_downcast_marker(type_id: TypeId) -> bool {
    type_id == TypeId::of::<MagicPlfDowncastMarker>()
}

/// Does a type implementing `Subscriber` contain any per-layer filters?
pub(crate) fn subscriber_has_plf<S>(subscriber: &S) -> bool
where
    S: Subscriber,
{
    (subscriber as &dyn Subscriber).is::<MagicPlfDowncastMarker>()
}

/// Does a type implementing `Layer` contain any per-layer filters?
pub(crate) fn layer_has_plf<L, S>(layer: &L) -> bool
where
    L: Layer<S>,
    S: Subscriber,
{
    unsafe {
        // Safety: we're not actually *doing* anything with this pointer --- we
        // only care about the `Option`, which we're turning into a `bool`. So
        // even if the layer decides to be evil and give us some kind of invalid
        // pointer, we don't ever dereference it, so this is always safe.
        layer.downcast_raw(TypeId::of::<MagicPlfDowncastMarker>())
    }
    .is_some()
}

struct FmtBitset(u64);

impl fmt::Debug for FmtBitset {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let mut set = f.debug_set();
        for bit in 0..64 {
            // if the `bit`-th bit is set, add it to the debug set
            if self.0 & (1 << bit) != 0 {
                set.entry(&bit);
            }
        }
        set.finish()
    }
}